These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 28397869)
1. Adsorption energy as a metric for wettability at the nanoscale. Giro R; Bryant PW; Engel M; Neumann RF; Steiner MB Sci Rep; 2017 Apr; 7():46317. PubMed ID: 28397869 [TBL] [Abstract][Full Text] [Related]
2. Surfactant solutions and porous substrates: spreading and imbibition. Starov VM Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660 [TBL] [Abstract][Full Text] [Related]
3. Closed-form expression for the profile of partially wetting two-dimensional droplets under gravity. Gomba JM; Perazzo CA Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 2):056310. PubMed ID: 23214879 [TBL] [Abstract][Full Text] [Related]
5. Theoretical model of droplet wettability on a low-surface-energy solid under the influence of gravity. Yonemoto Y; Kunugi T ScientificWorldJournal; 2014; 2014():647694. PubMed ID: 24511297 [TBL] [Abstract][Full Text] [Related]
6. Measuring wettability of biosurfaces at the microscale. Aparicio C; Maazouz Y; Yang D Methods Mol Biol; 2012; 811():163-77. PubMed ID: 22042679 [TBL] [Abstract][Full Text] [Related]
7. Droplet impact: Viscosity and wettability effects on splashing. Almohammadi H; Amirfazli A J Colloid Interface Sci; 2019 Oct; 553():22-30. PubMed ID: 31176976 [TBL] [Abstract][Full Text] [Related]
8. Ice and water droplets on graphite: a comparison of quantum and classical simulations. Ramírez R; Singh JK; Müller-Plathe F; Böhm MC J Chem Phys; 2014 Nov; 141(20):204701. PubMed ID: 25429951 [TBL] [Abstract][Full Text] [Related]
9. Molecular Dynamics Simulation of Heat Transport through Solid-Liquid Interface during Argon Droplet Evaporation on Heated Substrates. Yu JJ; Tang R; Li YR; Zhang L; Wu CM Langmuir; 2019 Feb; 35(6):2164-2171. PubMed ID: 30652879 [TBL] [Abstract][Full Text] [Related]
11. Impact of air and water vapor environments on the hydrophobicity of surfaces. Weisensee PB; Neelakantan NK; Suslick KS; Jacobi AM; King WP J Colloid Interface Sci; 2015 Sep; 453():177-185. PubMed ID: 25985421 [TBL] [Abstract][Full Text] [Related]
12. Hybrid Cassie-Wenzel model for droplets on surfaces with nanoscale roughness. Yen TH; Soong CY Phys Rev E; 2016 Feb; 93(2):022805. PubMed ID: 26986392 [TBL] [Abstract][Full Text] [Related]
13. Correlation of nanoscale behaviour of forces and macroscale surface wettability. Rana A; Patra A; Annamalai M; Srivastava A; Ghosh S; Stoerzinger K; Lee YL; Prakash S; Jueyuan RY; Goohpattader PS; Satyanarayana N; Gopinadhan K; Dykas MM; Poddar K; Saha S; Sarkar T; Kumar B; Bhatia CS; Giordano L; Shao-Horn Y; Venkatesan T Nanoscale; 2016 Aug; 8(34):15597-603. PubMed ID: 27510557 [TBL] [Abstract][Full Text] [Related]
14. Counteracting Interfacial Energetics for Wetting of Hydrophobic Surfaces in the Presence of Surfactants. Bera B; Carrier O; Backus EHG; Bonn M; Shahidzadeh N; Bonn D Langmuir; 2018 Oct; 34(41):12344-12349. PubMed ID: 30240229 [TBL] [Abstract][Full Text] [Related]
15. Bioinspired Hand-Operated Smart-Wetting Systems Using Smooth Liquid Coatings. Tenjimbayashi M; Matsubayashi T; Moriya T; Shiratori S Langmuir; 2017 Dec; 33(50):14445-14450. PubMed ID: 28625062 [TBL] [Abstract][Full Text] [Related]
16. Thermal singularity and droplet motion in one-component fluids on solid substrates with thermal gradients. Xu X; Qian T Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 1):061603. PubMed ID: 23005105 [TBL] [Abstract][Full Text] [Related]