These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 28397891)

  • 1. H
    Dong G; Phung QM; Hallaert SD; Pierloot K; Ryde U
    Phys Chem Chem Phys; 2017 Apr; 19(16):10590-10601. PubMed ID: 28397891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reaction Mechanism of [NiFe] Hydrogenase Studied by Computational Methods.
    Dong G; Phung QM; Pierloot K; Ryde U
    Inorg Chem; 2018 Dec; 57(24):15289-15298. PubMed ID: 30500163
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accurate calculations of geometries and singlet-triplet energy differences for active-site models of [NiFe] hydrogenase.
    Delcey MG; Pierloot K; Phung QM; Vancoillie S; Lindh R; Ryde U
    Phys Chem Chem Phys; 2014 May; 16(17):7927-38. PubMed ID: 24647807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protonation states of intermediates in the reaction mechanism of [NiFe] hydrogenase studied by computational methods.
    Dong G; Ryde U
    J Biol Inorg Chem; 2016 Jun; 21(3):383-94. PubMed ID: 26940957
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of H2 binding on the nonadiabatic transition probability between singlet and triplet states of the [NiFe]-hydrogenase active site.
    Kaliakin DS; Zaari RR; Varganov SA
    J Phys Chem A; 2015 Feb; 119(6):1066-73. PubMed ID: 25603170
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploration of H
    Dong G; Ryde U; Aa Jensen HJ; HedegÄrd ED
    Phys Chem Chem Phys; 2018 Jan; 20(2):794-801. PubMed ID: 29205241
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical investigation of aerobic and anaerobic oxidative inactivation of the [NiFe]-hydrogenase active site.
    Breglia R; Greco C; Fantucci P; De Gioia L; Bruschi M
    Phys Chem Chem Phys; 2018 Jan; 20(3):1693-1706. PubMed ID: 29264600
    [TBL] [Abstract][Full Text] [Related]  

  • 8. QM/MM studies of Ni-Fe hydrogenases: the effect of enzyme environment on the structure and energies of the inactive and active states.
    Jayapal P; Sundararajan M; Hillier IH; Burton NA
    Phys Chem Chem Phys; 2008 Aug; 10(29):4249-57. PubMed ID: 18633545
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrogen bonding effect between active site and protein environment on catalysis performance in H
    Qiu S; Azofra LM; MacFarlane DR; Sun C
    Phys Chem Chem Phys; 2018 Feb; 20(9):6735-6743. PubMed ID: 29457815
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A theoretical study of spin states in Ni-S4 complexes and models of the [NiFe] hydrogenase active site.
    Bruschi M; De Gioia L; Zampella G; Reiher M; Fantucci P; Stein M
    J Biol Inorg Chem; 2004 Oct; 9(7):873-84. PubMed ID: 15365900
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Disclosure of key stereoelectronic factors for efficient H2 binding and cleavage in the active site of [NiFe]-hydrogenases.
    Bruschi M; Tiberti M; Guerra A; De Gioia L
    J Am Chem Soc; 2014 Feb; 136(5):1803-14. PubMed ID: 24392667
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Key hydride vibrational modes in [NiFe] hydrogenase model compounds studied by resonance Raman spectroscopy and density functional calculations.
    Shafaat HS; Weber K; Petrenko T; Neese F; Lubitz W
    Inorg Chem; 2012 Nov; 51(21):11787-97. PubMed ID: 23039071
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrogen evolution in [NiFe] hydrogenases and related biomimetic systems: similarities and differences.
    Das R; Neese F; van Gastel M
    Phys Chem Chem Phys; 2016 Sep; 18(35):24681-92. PubMed ID: 27545687
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comprehensive reaction mechanisms at and near the Ni-Fe active sites of [NiFe] hydrogenases.
    Tai H; Higuchi Y; Hirota S
    Dalton Trans; 2018 Mar; 47(13):4408-4423. PubMed ID: 29532823
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [NiFe]-hydrogenases revisited: nickel-carboxamido bond formation in a variant with accrued O2-tolerance and a tentative re-interpretation of Ni-SI states.
    Volbeda A; Martin L; Liebgott PP; De Lacey AL; Fontecilla-Camps JC
    Metallomics; 2015 Apr; 7(4):710-8. PubMed ID: 25780984
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atomic partitioning of M-H2 bonds in [NiFe] hydrogenase--a test case of concurrent binding.
    Vedha SA; Solomon RV; Venuvanalingam P
    Phys Chem Chem Phys; 2014 Jun; 16(22):10698-707. PubMed ID: 24756140
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of H2 Production by Models for the [NiFe]-Hydrogenases: Role of Reduced Hydrides.
    Ulloa OA; Huynh MT; Richers CP; Bertke JA; Nilges MJ; Hammes-Schiffer S; Rauchfuss TB
    J Am Chem Soc; 2016 Jul; 138(29):9234-45. PubMed ID: 27328053
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrogen Evolution from Aqueous Solutions Mediated by a Heterogenized [NiFe]-Hydrogenase Model: Low pH Enables Catalysis through an Enzyme-Relevant Mechanism.
    Ahmed ME; Chattopadhyay S; Wang L; Brazzolotto D; Pramanik D; Aldakov D; Fize J; Morozan A; Gennari M; Duboc C; Dey A; Artero V
    Angew Chem Int Ed Engl; 2018 Dec; 57(49):16001-16004. PubMed ID: 30307683
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resonance Raman Spectroscopic Analysis of the [NiFe] Active Site and the Proximal [4Fe-3S] Cluster of an O2-Tolerant Membrane-Bound Hydrogenase in the Crystalline State.
    Siebert E; Rippers Y; Frielingsdorf S; Fritsch J; Schmidt A; Kalms J; Katz S; Lenz O; Scheerer P; Paasche L; Pelmenschikov V; Kuhlmann U; Mroginski MA; Zebger I; Hildebrandt P
    J Phys Chem B; 2015 Oct; 119(43):13785-96. PubMed ID: 26201814
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A metal-metal bond in the light-induced state of [NiFe] hydrogenases with relevance to hydrogen evolution.
    Kampa M; Pandelia ME; Lubitz W; van Gastel M; Neese F
    J Am Chem Soc; 2013 Mar; 135(10):3915-25. PubMed ID: 23402569
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.