These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 28398033)

  • 1. Copper Nanowire-Based Aerogel with Tunable Pore Structure and Its Application as Flexible Pressure Sensor.
    Xu X; Wang R; Nie P; Cheng Y; Lu X; Shi L; Sun J
    ACS Appl Mater Interfaces; 2017 Apr; 9(16):14273-14280. PubMed ID: 28398033
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioinspired Ultralight Inorganic Aerogel for Highly Efficient Air Filtration and Oil-Water Separation.
    Zhang YG; Zhu YJ; Xiong ZC; Wu J; Chen F
    ACS Appl Mater Interfaces; 2018 Apr; 10(15):13019-13027. PubMed ID: 29611706
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Manufacturable conducting rubber ambers and stretchable conductors from copper nanowire aerogel monoliths.
    Tang Y; Gong S; Chen Y; Yap LW; Cheng W
    ACS Nano; 2014 Jun; 8(6):5707-14. PubMed ID: 24873318
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultralight Conductive Silver Nanowire Aerogels.
    Qian F; Lan PC; Freyman MC; Chen W; Kou T; Olson TY; Zhu C; Worsley MA; Duoss EB; Spadaccini CM; Baumann T; Han TY
    Nano Lett; 2017 Dec; 17(12):7171-7176. PubMed ID: 28872874
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gold Aerogel Monoliths with Tunable Ultralow Densities.
    Qian F; Troksa A; Fears TM; Nielsen MH; Nelson AJ; Baumann TF; Kucheyev SO; Han TY; Bagge-Hansen M
    Nano Lett; 2020 Jan; 20(1):131-135. PubMed ID: 31622548
    [TBL] [Abstract][Full Text] [Related]  

  • 6. One-Step Fabrication of Stretchable Copper Nanowire Conductors by a Fast Photonic Sintering Technique and Its Application in Wearable Devices.
    Ding S; Jiu J; Gao Y; Tian Y; Araki T; Sugahara T; Nagao S; Nogi M; Koga H; Suganuma K; Uchida H
    ACS Appl Mater Interfaces; 2016 Mar; 8(9):6190-9. PubMed ID: 26830466
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D Printing Hierarchical Silver Nanowire Aerogel with Highly Compressive Resilience and Tensile Elongation through Tunable Poisson's Ratio.
    Yan P; Brown E; Su Q; Li J; Wang J; Xu C; Zhou C; Lin D
    Small; 2017 Oct; 13(38):. PubMed ID: 28834394
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hybrid Silver Nanowire-CMC Aerogels: From 1D Nanomaterials to 3D Electrically Conductive and Mechanically Resistant Lightweight Architectures.
    Touron M; Celle C; Orgéas L; Simonato JP
    ACS Nano; 2022 Sep; 16(9):14188-14197. PubMed ID: 35983915
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flexible Ti
    Zhi H; Zhang X; Wang F; Wan P; Feng L
    ACS Appl Mater Interfaces; 2021 Sep; 13(38):45987-45994. PubMed ID: 34523329
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robust and Stable Cu Nanowire@Graphene Core-Shell Aerogels for Ultraeffective Electromagnetic Interference Shielding.
    Wu S; Zou M; Li Z; Chen D; Zhang H; Yuan Y; Pei Y; Cao A
    Small; 2018 Jun; 14(23):e1800634. PubMed ID: 29749012
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Additive Manufacturing of Resilient SiC Nanowire Aerogels.
    Guo P; Su L; Peng K; Lu D; Xu L; Li M; Wang H
    ACS Nano; 2022 Apr; 16(4):6625-6633. PubMed ID: 35404589
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strain-driven and ultrasensitive resistive sensor/switch based on conductive alginate/nitrogen-doped carbon-nanotube-supported Ag hybrid aerogels with pyramid design.
    Zhao S; Zhang G; Gao Y; Deng L; Li J; Sun R; Wong CP
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):22823-9. PubMed ID: 25423613
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultralight GO-Hybridized CNTs Aerogels with Enhanced Electronic and Mechanical Properties for Piezoresistive Sensors.
    Wu X; Li Z; Zhu Y; Wang J; Yang S
    ACS Appl Mater Interfaces; 2021 Jun; 13(22):26352-26361. PubMed ID: 34033482
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Copper Nanowire/Polydopamine-Modified Sodium Alginate Composite Films with Enhanced Long-Term Stability and Adhesion for Flexible Organic Light-Emitting Diodes.
    Zhao Y; Kang J; Huang W; Kong P; An D; He G
    ACS Appl Mater Interfaces; 2023 Nov; ():. PubMed ID: 37917355
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Macroscopic-Scale Preparation of Aramid Nanofiber Aerogel by Modified Freezing-Drying Method.
    Xie C; Liu S; Zhang Q; Ma H; Yang S; Guo ZX; Qiu T; Tuo X
    ACS Nano; 2021 Jun; 15(6):10000-10009. PubMed ID: 34086437
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-Arch-Structured All-Carbon Aerogels with Superelasticity and High Fatigue Resistance as Wearable Sensors.
    Huang J; Zeng J; Liang B; Wu J; Li T; Li Q; Feng F; Feng Q; Rood MJ; Yan Z
    ACS Appl Mater Interfaces; 2020 Apr; 12(14):16822-16830. PubMed ID: 32186851
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ synthesis of silver nanowire gel and its super-elastic composite foams.
    Huang S; Feng C; Mayes ELH; Yao B; He Z; Asadi S; Alan T; Yang J
    Nanoscale; 2020 Oct; 12(38):19861-19869. PubMed ID: 32970059
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fatigue Resistant Aerogel/Hydrogel Nanostructured Hybrid for Highly Sensitive and Ultrabroad Pressure Sensing.
    Huang J; Zeng J; Zhang X; Guo G; Liu R; Yan Z; Yin Y
    Small; 2022 Jan; 18(1):e2104706. PubMed ID: 34873837
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transparent ultrathin SiO
    He J; Ma C; Yang J; Zou X; Sun B; Sun Y; Wang C
    Fundam Res; 2023 Jan; 3(1):118-125. PubMed ID: 38933571
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of Superelastic, Highly Conductive Graphene Aerogel/Liquid Metal Foam and its Piezoresistive Application.
    Ma J; Yan R; Wo X; Cao Y; Yu X; Li A; Huang J; Li F; Luo L; Zhang Q
    Chemistry; 2024 Mar; 30(17):e202303594. PubMed ID: 38278765
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.