These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 28398075)

  • 1. Disturbance response indicators of Impatiens walleriana exposed to benzene and chromium.
    Campos V; Lessa SS; Ramos RL; Shinzato MC; Medeiros TAM
    Int J Phytoremediation; 2017 Aug; 19(8):709-717. PubMed ID: 28398075
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cadmium Uptake by Cuttings of Impatiens walleriana in Response to Different Cadmium Concentrations and Growth Periods.
    Lai HY; Lam CM; Wang WZ; Ji YJ
    Bull Environ Contam Toxicol; 2017 Mar; 98(3):317-322. PubMed ID: 27377752
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Subcellular distribution and chemical forms of cadmium in Impatiens walleriana in relation to its phytoextraction potential.
    Lai HY
    Chemosphere; 2015 Nov; 138():370-6. PubMed ID: 26133699
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of extended growth periods on subcellular distribution, chemical forms, and the translocation of cadmium in Impatiens walleriana.
    Lai HY; Cai MC
    Int J Phytoremediation; 2016; 18(3):228-34. PubMed ID: 26247535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mercury uptake and translocation in Impatiens walleriana plants grown in the contaminated soil from Oak Ridge.
    Pant P; Allen M; Tansel B
    Int J Phytoremediation; 2011 Feb; 13(2):168-76. PubMed ID: 21598784
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chelator effects on bioconcentration and translocation of cadmium by hyperaccumulators, Tagetes patula and Impatiens walleriana.
    Wei JL; Lai HY; Chen ZS
    Ecotoxicol Environ Saf; 2012 Oct; 84():173-8. PubMed ID: 22832002
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical-specific health consultation for chromated copper arsenate chemical mixture: port of Djibouti.
    Chou S; Colman J; Tylenda C; De Rosa C
    Toxicol Ind Health; 2007 May; 23(4):183-208. PubMed ID: 18429380
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of plant-associated bacteria biosensors on plant growth in the presence of hexavalent chromium.
    Francisco R; Branco R; Schwab S; Baldani JI; Morais PV
    World J Microbiol Biotechnol; 2017 Dec; 34(1):12. PubMed ID: 29256050
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ailanthus Altissima and Phragmites Australis for chromium removal from a contaminated soil.
    Ranieri E; Fratino U; Petrella A; Torretta V; Rada EC
    Environ Sci Pollut Res Int; 2016 Aug; 23(16):15983-9. PubMed ID: 27146531
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An in situ study of growth of Lemongrass Cymbopogon flexuosus (Nees ex Steud.) W. Watson on varying concentration of Chromium (Cr
    Patra DK; Pradhan C; Patra HK
    Chemosphere; 2018 Feb; 193():793-799. PubMed ID: 29175407
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Foliar application of methyl jasmonate affects impatiens walleriana growth and leaf physiology under drought stress.
    Đurić M; Subotić A; Prokić L; Trifunović-Momčilov M; Milošević S
    Plant Signal Behav; 2023 Dec; 18(1):2219936. PubMed ID: 37288992
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Maleic acid assisted improvement of metal chelation and antioxidant metabolism confers chromium tolerance in Brassica juncea L.
    Mahmud JA; Hasanuzzaman M; Nahar K; Rahman A; Hossain MS; Fujita M
    Ecotoxicol Environ Saf; 2017 Oct; 144():216-226. PubMed ID: 28624590
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tolerance of Impatiens balsamina L., and Crotalaria retusa L. to grow on soil contaminated by used lubricating oil: A comparative study.
    Walakulu Gamage SS; Masakorala K; Brown MT; Widana Gamage SMK
    Ecotoxicol Environ Saf; 2020 Jan; 188():109911. PubMed ID: 31722801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Promoted biodegradation and microbiological effects of petroleum hydrocarbons by Impatiens balsamina L. with strong endurance.
    Cai Z; Zhou Q; Peng S; Li K
    J Hazard Mater; 2010 Nov; 183(1-3):731-7. PubMed ID: 20724074
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Response of Artemisia herba alba to hexavalent chromium pollution under arid and semi-arid conditions.
    Rebhi AEM; Lounici H; Lahrech MB; Morel JL
    Int J Phytoremediation; 2019; 21(3):224-229. PubMed ID: 30656958
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioavailability assessment and accumulation by five garden flower species grown in artificially cadmium-contaminated soils.
    Lin CC; Lai HY; Chen ZS
    Int J Phytoremediation; 2010 Jul; 12(5):454-67. PubMed ID: 21166288
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular Characterization and Expression of Four Aquaporin Genes in
    Đurić MJ; Subotić AR; Prokić LT; Trifunović-Momčilov MM; Cingel AD; Dragićević MB; Simonović AD; Milošević SM
    Plants (Basel); 2021 Jan; 10(1):. PubMed ID: 33466920
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism study of Chromium influenced soil remediated by an uptake-detoxification system using hyperaccumulator, resistant microbe consortium, and nano iron complex.
    Wang C; Tan H; Li H; Xie Y; Liu H; Xu F; Xu H
    Environ Pollut; 2020 Feb; 257():113558. PubMed ID: 31708284
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: a review.
    Dhal B; Thatoi HN; Das NN; Pandey BD
    J Hazard Mater; 2013 Apr; 250-251():272-91. PubMed ID: 23467183
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Characterization of Cr Tolerance and Accumulation in
    Dong BB; Chen YY; Hui HX; Lu WJ; Yang XQ; Liu YF
    Huan Jing Ke Xue; 2016 Oct; 37(10):4044-4053. PubMed ID: 29964442
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.