These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 28398441)

  • 1. Temperature profiles and heat fluxes observed in molecular dynamics simulations of force-driven liquid flows.
    Ghorbanian J; Beskok A
    Phys Chem Chem Phys; 2017 Apr; 19(16):10317-10325. PubMed ID: 28398441
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A phenomenological continuum model for force-driven nano-channel liquid flows.
    Ghorbanian J; Celebi AT; Beskok A
    J Chem Phys; 2016 Nov; 145(18):184109. PubMed ID: 27846688
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular dynamics simulations of thermal resistance at the liquid-solid interface.
    Kim BH; Beskok A; Cagin T
    J Chem Phys; 2008 Nov; 129(17):174701. PubMed ID: 19045364
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Droplet motion in one-component fluids on solid substrates with wettability gradients.
    Xu X; Qian T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 1):051601. PubMed ID: 23004770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of viscous heating and wall-fluid interaction energy on rate-dependent slip behavior of simple fluids.
    Bao L; Priezjev NV; Hu H; Luo K
    Phys Rev E; 2017 Sep; 96(3-1):033110. PubMed ID: 29346922
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling the combined effect of surface roughness and shear rate on slip flow of simple fluids.
    Niavarani A; Priezjev NV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 1):011606. PubMed ID: 20365383
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface effects on friction-induced fluid heating in nanochannel flows.
    Li Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Feb; 79(2 Pt 2):026312. PubMed ID: 19391845
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of water models on the prediction of slip length of water in graphene nanochannels.
    Celebi AT; Nguyen CT; Hartkamp R; Beskok A
    J Chem Phys; 2019 Nov; 151(17):174705. PubMed ID: 31703484
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Slip behavior in liquid films on surfaces of patterned wettability: comparison between continuum and molecular dynamics simulations.
    Priezjev NV; Darhuber AA; Troian SM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Apr; 71(4 Pt 1):041608. PubMed ID: 15903683
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Power-law slip profile of the moving contact line in two-phase immiscible flows.
    Qian T; Wang XP; Sheng P
    Phys Rev Lett; 2004 Aug; 93(9):094501. PubMed ID: 15447105
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular dynamic simulation of platinum heater and associated nano-scale liquid argon film evaporation and colloidal adsorption characteristics.
    Maroo SC; Chung JN
    J Colloid Interface Sci; 2008 Dec; 328(1):134-46. PubMed ID: 18829047
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dependence between velocity slip and temperature jump in shear flows.
    Sun J; Wang W; Wang HS
    J Chem Phys; 2013 Jun; 138(23):234703. PubMed ID: 23802972
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transport Phenomena of Water in Molecular Fluidic Channels.
    Vo TQ; Kim B
    Sci Rep; 2016 Sep; 6():33881. PubMed ID: 27650138
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of Coulombic interaction methods in non-equilibrium studies of heat transfer in water.
    Muscatello J; Bresme F
    J Chem Phys; 2011 Dec; 135(23):234111. PubMed ID: 22191868
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal transport across the interface between liquid n-dodecane and its own vapor: A molecular dynamics study.
    Bird E; Gutierrez Plascencia J; Liang Z
    J Chem Phys; 2020 May; 152(18):184701. PubMed ID: 32414243
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular dynamics simulations for the motion of evaporative droplets driven by thermal gradients along nanochannels.
    Wu C; Xu X; Qian T
    J Phys Condens Matter; 2013 May; 25(19):195103. PubMed ID: 23552493
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Drag on a nanotube in uniform liquid argon flow.
    Tang W; Advani SG
    J Chem Phys; 2006 Nov; 125(17):174706. PubMed ID: 17100460
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transport coefficients for granular media from molecular dynamics simulations.
    Bizon C; Shattuck MD; Swift JB; Swinney HL
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Oct; 60(4 Pt B):4340-51. PubMed ID: 11970288
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaporation of liquid droplets of nano- and micro-meter size as a function of molecular mass and intermolecular interactions: experiments and molecular dynamics simulations.
    HoƂyst R; Litniewski M; Jakubczyk D
    Soft Matter; 2017 Sep; 13(35):5858-5864. PubMed ID: 28785757
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Slip flow in graphene nanochannels.
    Kannam SK; Todd BD; Hansen JS; Daivis PJ
    J Chem Phys; 2011 Oct; 135(14):144701. PubMed ID: 22010725
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.