These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 28398441)

  • 21. Contact line motion in confined liquid-gas systems: Slip versus phase transition.
    Xu X; Qian T
    J Chem Phys; 2010 Nov; 133(20):204704. PubMed ID: 21133449
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular dynamics investigation into the structural features and transport properties of C60 in liquid argon.
    Fang KC; Weng CI
    J Phys Chem A; 2007 Jul; 111(26):5845-50. PubMed ID: 17559197
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Thermal transport at a nanoparticle-water interface: A molecular dynamics and continuum modeling study.
    Rajabpour A; Seif R; Arabha S; Heyhat MM; Merabia S; Hassanali A
    J Chem Phys; 2019 Mar; 150(11):114701. PubMed ID: 30901998
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Gas-surface interactions using accommodation coefficients for a dilute and a dense gas in a micro- or nanochannel: heat flux predictions using combined molecular dynamics and Monte Carlo techniques.
    Nedea SV; van Steenhoven AA; Markvoort AJ; Spijker P; Giordano D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):053012. PubMed ID: 25353885
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Heat conduction in driven Frenkel-Kontorova lattices: thermal pumping and resonance.
    Ai BQ; He D; Hu B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Mar; 81(3 Pt 1):031124. PubMed ID: 20365714
    [TBL] [Abstract][Full Text] [Related]  

  • 26. General expression for entropy production in transport processes based on the thermomass model.
    Dong Y; Cao BY; Guo ZY
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 1):061107. PubMed ID: 23005051
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Thermal and second-law analysis of a micro- or nanocavity using direct-simulation Monte Carlo.
    Mohammadzadeh A; Roohi E; Niazmand H; Stefanov S; Myong RS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 2):056310. PubMed ID: 23004865
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Stick-slip kinetics in a bistable bar immersed in a heat bath.
    Sun C; Purohit PK
    Int J Solids Struct; 2019 Dec; 180-181():205-220. PubMed ID: 32831392
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Magnetic reconnection in plasma under inertial confinement fusion conditions driven by heat flux effects in Ohm's law.
    Joglekar AS; Thomas AG; Fox W; Bhattacharjee A
    Phys Rev Lett; 2014 Mar; 112(10):105004. PubMed ID: 24679302
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Shear force measurement of the hydrodynamic wall position in molecular dynamics.
    Herrero C; Omori T; Yamaguchi Y; Joly L
    J Chem Phys; 2019 Jul; 151(4):041103. PubMed ID: 31370549
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A quasi-continuum hydrodynamic model for slit shaped nanochannel flow.
    Bhadauria R; Aluru NR
    J Chem Phys; 2013 Aug; 139(7):074109. PubMed ID: 23968074
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Slip-flow boundary condition for straight walls in the lattice Boltzmann model.
    Szalmás L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 2):066710. PubMed ID: 16907026
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synchronized Molecular-Dynamics Simulation of the Thermal Lubrication of an Entangled Polymeric Liquid.
    Yasuda S
    Polymers (Basel); 2019 Jan; 11(1):. PubMed ID: 30960115
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Convection flows driven by laser heating of a liquid layer.
    Rivière D; Selva B; Chraibi H; Delabre U; Delville JP
    Phys Rev E; 2016 Feb; 93(2):023112. PubMed ID: 26986418
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Water under temperature gradients: polarization effects and microscopic mechanisms of heat transfer.
    Muscatello J; Römer F; Sala J; Bresme F
    Phys Chem Chem Phys; 2011 Nov; 13(44):19970-8. PubMed ID: 21989634
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Surface effects on nanoscale Poiseuille flows under large driving force.
    Liu C; Li Z
    J Chem Phys; 2010 Jan; 132(2):024507. PubMed ID: 20095687
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Heat Transfer Analysis for Stationary Boundary Layer Slip Flow of a Power-Law Fluid in a Darcy Porous Medium with Plate Suction/Injection.
    Aziz A; Ali Y; Aziz T; Siddique JI
    PLoS One; 2015; 10(9):e0138855. PubMed ID: 26407162
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dependence of nanoconfined liquid behavior on boundary and bulk factors.
    Sun J; Wang W; Wang HS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):023020. PubMed ID: 23496623
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Temperature gradient-driven motion and assembly of two-dimensional (2D) materials on the liquid surface: a theoretical framework and molecular dynamics simulation.
    Wen Y; Liu Q; Liu Y
    Phys Chem Chem Phys; 2020 Oct; 22(41):24097-24108. PubMed ID: 33079103
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular diffusion and slip boundary conditions at smooth surfaces with periodic and random nanoscale textures.
    Priezjev NV
    J Chem Phys; 2011 Nov; 135(20):204704. PubMed ID: 22128949
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.