These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 28398465)

  • 1. Machine learning in computational biology to accelerate high-throughput protein expression.
    Sastry A; Monk J; Tegel H; Uhlen M; Palsson BO; Rockberg J; Brunk E
    Bioinformatics; 2017 Aug; 33(16):2487-2495. PubMed ID: 28398465
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Develop machine learning-based regression predictive models for engineering protein solubility.
    Han X; Wang X; Zhou K
    Bioinformatics; 2019 Nov; 35(22):4640-4646. PubMed ID: 31038685
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PyMethylProcess-convenient high-throughput preprocessing workflow for DNA methylation data.
    Levy JJ; Titus AJ; Salas LA; Christensen BC
    Bioinformatics; 2019 Dec; 35(24):5379-5381. PubMed ID: 31368477
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scaling tree-based automated machine learning to biomedical big data with a feature set selector.
    Le TT; Fu W; Moore JH
    Bioinformatics; 2020 Jan; 36(1):250-256. PubMed ID: 31165141
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SPINE: an integrated tracking database and data mining approach for identifying feasible targets in high-throughput structural proteomics.
    Bertone P; Kluger Y; Lan N; Zheng D; Christendat D; Yee A; Edwards AM; Arrowsmith CH; Montelione GT; Gerstein M
    Nucleic Acids Res; 2001 Jul; 29(13):2884-98. PubMed ID: 11433035
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PaRSnIP: sequence-based protein solubility prediction using gradient boosting machine.
    Rawi R; Mall R; Kunji K; Shen CH; Kwong PD; Chuang GY
    Bioinformatics; 2018 Apr; 34(7):1092-1098. PubMed ID: 29069295
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ssbio: a Python framework for structural systems biology.
    Mih N; Brunk E; Chen K; Catoiu E; Sastry A; Kavvas E; Monk JM; Zhang Z; Palsson BO
    Bioinformatics; 2018 Jun; 34(12):2155-2157. PubMed ID: 29444205
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNCON2: improved protein contact prediction using two-level deep convolutional neural networks.
    Adhikari B; Hou J; Cheng J
    Bioinformatics; 2018 May; 34(9):1466-1472. PubMed ID: 29228185
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extreme learning machines for reverse engineering of gene regulatory networks from expression time series.
    Rubiolo M; Milone DH; Stegmayer G
    Bioinformatics; 2018 Apr; 34(7):1253-1260. PubMed ID: 29182723
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NetSolP: predicting protein solubility in Escherichia coli using language models.
    Thumuluri V; Martiny HM; Almagro Armenteros JJ; Salomon J; Nielsen H; Johansen AR
    Bioinformatics; 2022 Jan; 38(4):941-946. PubMed ID: 35088833
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Overview on Predicting Protein Subchloroplast Localization by using Machine Learning Methods.
    Liu ML; Su W; Guan ZX; Zhang D; Chen W; Liu L; Ding H
    Curr Protein Pept Sci; 2020; 21(12):1229-1241. PubMed ID: 31957607
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proteome-wide subcellular topologies of E. coli polypeptides database (STEPdb).
    Orfanoudaki G; Economou A
    Mol Cell Proteomics; 2014 Dec; 13(12):3674-87. PubMed ID: 25210196
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ProFET: Feature engineering captures high-level protein functions.
    Ofer D; Linial M
    Bioinformatics; 2015 Nov; 31(21):3429-36. PubMed ID: 26130574
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hum-mPLoc 3.0: prediction enhancement of human protein subcellular localization through modeling the hidden correlations of gene ontology and functional domain features.
    Zhou H; Yang Y; Shen HB
    Bioinformatics; 2017 Mar; 33(6):843-853. PubMed ID: 27993784
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An introduction to deep learning on biological sequence data: examples and solutions.
    Jurtz VI; Johansen AR; Nielsen M; Almagro Armenteros JJ; Nielsen H; Sønderby CK; Winther O; Sønderby SK
    Bioinformatics; 2017 Nov; 33(22):3685-3690. PubMed ID: 28961695
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of whole-cell transcriptional response with machine learning.
    Eslami M; Borujeni AE; Eramian H; Weston M; Zheng G; Urrutia J; Corbet C; Becker D; Maschhoff P; Clowers K; Cristofaro A; Hosseini HD; Gordon DB; Dorfan Y; Singer J; Vaughn M; Gaffney N; Fonner J; Stubbs J; Voigt CA; Yeung E
    Bioinformatics; 2022 Jan; 38(2):404-409. PubMed ID: 34570169
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The value of prior knowledge in machine learning of complex network systems.
    Ferranti D; Krane D; Craft D
    Bioinformatics; 2017 Nov; 33(22):3610-3618. PubMed ID: 29036404
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioinformatics approaches for improved recombinant protein production in Escherichia coli: protein solubility prediction.
    Chang CC; Song J; Tey BT; Ramanan RN
    Brief Bioinform; 2014 Nov; 15(6):953-62. PubMed ID: 23926206
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GlycoMine: a machine learning-based approach for predicting N-, C- and O-linked glycosylation in the human proteome.
    Li F; Li C; Wang M; Webb GI; Zhang Y; Whisstock JC; Song J
    Bioinformatics; 2015 May; 31(9):1411-9. PubMed ID: 25568279
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removal of batch effects using distribution-matching residual networks.
    Shaham U; Stanton KP; Zhao J; Li H; Raddassi K; Montgomery R; Kluger Y
    Bioinformatics; 2017 Aug; 33(16):2539-2546. PubMed ID: 28419223
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.