BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 28398467)

  • 1. ST Pipeline: an automated pipeline for spatial mapping of unique transcripts.
    Navarro JF; Sjöstrand J; Salmén F; Lundeberg J; Ståhl PL
    Bioinformatics; 2017 Aug; 33(16):2591-2593. PubMed ID: 28398467
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spotless, a reproducible pipeline for benchmarking cell type deconvolution in spatial transcriptomics.
    Sang-Aram C; Browaeys R; Seurinck R; Saeys Y
    Elife; 2024 May; 12():. PubMed ID: 38787371
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-parametric modelling of temporal and spatial counts data from RNA-seq experiments.
    BinTayyash N; Georgaka S; John ST; Ahmed S; Boukouvalas A; Hensman J; Rattray M
    Bioinformatics; 2021 Nov; 37(21):3788-3795. PubMed ID: 34213536
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatial analysis toolkits for RNA in situ sequencing.
    Chen J; Ke R
    Wiley Interdiscip Rev RNA; 2024; 15(2):e1842. PubMed ID: 38605484
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SpatialView: an interactive web application for visualization of multiple samples in spatial transcriptomics experiments.
    Mohanty C; Prasad A; Cheng L; Arkin LM; Shields BE; Drolet B; Kendziorski C
    Bioinformatics; 2024 Mar; 40(3):. PubMed ID: 38444087
    [TBL] [Abstract][Full Text] [Related]  

  • 6. scDAPP: a comprehensive single-cell transcriptomics analysis pipeline optimized for cross-group comparison.
    Ferrena A; Zheng XY; Jackson K; Hoang B; Morrow B; Zheng D
    bioRxiv; 2024 May; ():. PubMed ID: 38766089
    [TBL] [Abstract][Full Text] [Related]  

  • 7. STalign: Alignment of spatial transcriptomics data using diffeomorphic metric mapping.
    Clifton K; Anant M; Aihara G; Atta L; Aimiuwu OK; Kebschull JM; Miller MI; Tward D; Fan J
    Nat Commun; 2023 Dec; 14(1):8123. PubMed ID: 38065970
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PlanNET: homology-based predicted interactome for multiple planarian transcriptomes.
    Castillo-Lara S; Abril JF
    Bioinformatics; 2018 Mar; 34(6):1016-1023. PubMed ID: 29186384
    [TBL] [Abstract][Full Text] [Related]  

  • 9. More Accurate Transcript Assembly via Parameter Advising.
    Deblasio D; Kim K; Kingsford C
    J Comput Biol; 2020 Aug; 27(8):1181-1189. PubMed ID: 32315544
    [No Abstract]   [Full Text] [Related]  

  • 10. DART: a fast and accurate RNA-seq mapper with a partitioning strategy.
    Lin HN; Hsu WL
    Bioinformatics; 2018 Jan; 34(2):190-197. PubMed ID: 28968831
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CopyVAE: a variational autoencoder-based approach for copy number variation inference using single-cell transcriptomics.
    Kurt S; Chen M; Toosi H; Chen X; Engblom C; Mold J; Hartman J; Lagergren J
    Bioinformatics; 2024 May; 40(5):. PubMed ID: 38676578
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-density generation of spatial transcriptomics with STAGE.
    Li S; Gai K; Dong K; Zhang Y; Zhang S
    Nucleic Acids Res; 2024 May; 52(9):4843-4856. PubMed ID: 38647109
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metadensity: a background-aware python pipeline for summarizing CLIP signals on various transcriptomic sites.
    Her HL; Boyle E; Yeo GW
    Bioinform Adv; 2022; 2(1):vbac083. PubMed ID: 36388152
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards unified quality verification of synthetic count data with countsimQC.
    Soneson C; Robinson MD
    Bioinformatics; 2018 Feb; 34(4):691-692. PubMed ID: 29028961
    [TBL] [Abstract][Full Text] [Related]  

  • 15. HE2Gene: image-to-RNA translation via multi-task learning for spatial transcriptomics data.
    Chen X; Lin J; Wang Y; Zhang W; Xie W; Zheng Z; Wong KC
    Bioinformatics; 2024 Jun; 40(6):. PubMed ID: 38837395
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A unified pipeline for FISH spatial transcriptomics.
    Cisar C; Keener N; Ruffalo M; Paten B
    Cell Genom; 2023 Sep; 3(9):100384. PubMed ID: 37719153
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Seq-Scope Protocol: Repurposing Illumina Sequencing Flow Cells for High-Resolution Spatial Transcriptomics.
    Kim Y; Cheng W; Cho CS; Hwang Y; Si Y; Park A; Schrank M; Hsu JE; Xi J; Kim M; Pedersen E; Koues OI; Wilson T; Jun G; Kang HM; Lee JH
    bioRxiv; 2024 Apr; ():. PubMed ID: 38617262
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accurate single-molecule spot detection for image-based spatial transcriptomics with weakly supervised deep learning.
    Laubscher E; Wang XJ; Razin N; Dougherty T; Xu RJ; Ombelets L; Pao E; Graf W; Moffitt JR; Yue Y; Van Valen D
    bioRxiv; 2024 Feb; ():. PubMed ID: 37732188
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CloudASM: an ultra-efficient cloud-based pipeline for mapping allele-specific DNA methylation.
    Dumont ELP; Tycko B; Do C
    Bioinformatics; 2020 Jun; 36(11):3558-3560. PubMed ID: 32119067
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Uncover spatially informed variations for single-cell spatial transcriptomics with STew.
    Guo N; Vargas J; Reynoso S; Fritz D; Krishna R; Wang C; Zhang F
    Bioinform Adv; 2024; 4(1):vbae064. PubMed ID: 38827413
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.