These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 28398608)

  • 1. Online Flowing Colloidosomes for Sequential Multi-analyte High-Throughput SERS Analysis.
    Phan-Quang GC; Wee EHZ; Yang F; Lee HK; Phang IY; Feng X; Alvarez-Puebla RA; Ling XY
    Angew Chem Int Ed Engl; 2017 May; 56(20):5565-5569. PubMed ID: 28398608
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-analyte High-Throughput Microplate-SERS Reader with Controllable Liquid Interfacial Arrays.
    Zhou B; Qu C; Du S; Gao W; Zhang Y; Ding Y; Wang H; Hou R; Su M; Liu H
    Anal Chem; 2022 May; 94(21):7528-7535. PubMed ID: 35581026
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-Dimensional Surface-Enhanced Raman Scattering Platforms: Large-Scale Plasmonic Hotspots for New Applications in Sensing, Microreaction, and Data Storage.
    Phan-Quang GC; Han X; Koh CSL; Sim HYF; Lay CL; Leong SX; Lee YH; Pazos-Perez N; Alvarez-Puebla RA; Ling XY
    Acc Chem Res; 2019 Jul; 52(7):1844-1854. PubMed ID: 31180637
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmonic Colloidosomes as Three-Dimensional SERS Platforms with Enhanced Surface Area for Multiphase Sub-Microliter Toxin Sensing.
    Phan-Quang GC; Lee HK; Phang IY; Ling XY
    Angew Chem Int Ed Engl; 2015 Aug; 54(33):9691-5. PubMed ID: 26120021
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mirrorlike Plasmonic Capsules for Online Microfluidic Raman Analysis of Drug in Human Saliva and Urine.
    Su M; Jiang Y; Yu F; Yu T; Du S; Xu Y; Yang L; Liu H
    ACS Appl Bio Mater; 2019 Sep; 2(9):3828-3835. PubMed ID: 35021356
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Moving MoO
    Song X; Yin M; Li J; Li Y; Yang H; Kong Q; Bai H; Xi G; Mao L
    Anal Chem; 2022 May; 94(19):7029-7034. PubMed ID: 35512314
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmonic Hotspots in Air: An Omnidirectional Three-Dimensional Platform for Stand-Off In-Air SERS Sensing of Airborne Species.
    Phan-Quang GC; Lee HK; Teng HW; Koh CSL; Yim BQ; Tan EKM; Tok WL; Phang IY; Ling XY
    Angew Chem Int Ed Engl; 2018 May; 57(20):5792-5796. PubMed ID: 29569823
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real Time Dual-Channel Multiplex SERS Ultradetection.
    Abalde-Cela S; Abell C; Alvarez-Puebla RA; Liz-Marzán LM
    J Phys Chem Lett; 2014 Jan; 5(1):73-9. PubMed ID: 26276183
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiplexed microfluidic surface-enhanced Raman spectroscopy.
    Abu-Hatab NA; John JF; Oran JM; Sepaniak MJ
    Appl Spectrosc; 2007 Oct; 61(10):1116-22. PubMed ID: 17958963
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optofluidic microsystem with quasi-3 dimensional gold plasmonic nanostructure arrays for online sensitive and reproducible SERS detection.
    Deng Y; Idso MN; Galvan DD; Yu Q
    Anal Chim Acta; 2015 Mar; 863():41-8. PubMed ID: 25732311
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On-line SERS detection of single bacterium using novel SERS nanoprobes and a microfluidic dielectrophoresis device.
    Lin HY; Huang CH; Hsieh WH; Liu LH; Lin YC; Chu CC; Wang ST; Kuo IT; Chau LK; Yang CY
    Small; 2014 Nov; 10(22):4700-10. PubMed ID: 25115777
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analytical characterization using surface-enhanced Raman scattering (SERS) and microfluidic sampling.
    Wang C; Yu C
    Nanotechnology; 2015 Mar; 26(9):092001. PubMed ID: 25676092
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Paper-based microfluidic approach for surface-enhanced raman spectroscopy and highly reproducible detection of proteins beyond picomolar concentration.
    Saha A; Jana NR
    ACS Appl Mater Interfaces; 2015 Jan; 7(1):996-1003. PubMed ID: 25521159
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of plasmon length-based surface enhanced Raman scattering for multiplex detection on microfluidic device.
    Nguyen AH; Lee J; Il Choi H; Seok Kwak H; Jun Sim S
    Biosens Bioelectron; 2015 Aug; 70():358-65. PubMed ID: 25841120
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A reproducible surface-enhanced raman spectroscopy approach. Online SERS measurements in a segmented microfluidic system.
    Strehle KR; Cialla D; Rösch P; Henkel T; Köhler M; Popp J
    Anal Chem; 2007 Feb; 79(4):1542-7. PubMed ID: 17297953
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid detection of drugs of abuse in saliva using surface enhanced Raman spectroscopy and microfluidics.
    Andreou C; Hoonejani MR; Barmi MR; Moskovits M; Meinhart CD
    ACS Nano; 2013 Aug; 7(8):7157-64. PubMed ID: 23859441
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasmonic liquid marbles: a miniature substrate-less SERS platform for quantitative and multiplex ultratrace molecular detection.
    Lee HK; Lee YH; Phang IY; Wei J; Miao YE; Liu T; Ling XY
    Angew Chem Int Ed Engl; 2014 May; 53(20):5054-8. PubMed ID: 24692329
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidic SERS devices: brightening the future of bioanalysis.
    Oliveira MJ; Dalot A; Fortunato E; Martins R; Byrne HJ; Franco R; Águas H
    Discov Mater; 2022; 2(1):12. PubMed ID: 36536830
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A 3D printed sheath flow interface for surface enhanced Raman spectroscopy (SERS) detection in flow.
    Morder CJ; Schultz ZD
    Analyst; 2024 Mar; 149(6):1849-1860. PubMed ID: 38347805
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface-Enhanced Raman Spectroscopy on Liquid Interfacial Nanoparticle Arrays for Multiplex Detecting Drugs in Urine.
    Ma Y; Liu H; Mao M; Meng J; Yang L; Liu J
    Anal Chem; 2016 Aug; 88(16):8145-51. PubMed ID: 27401135
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.