BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 28398644)

  • 1. Quantitative High-Throughput Screening Using a Coincidence Reporter Biocircuit.
    Schuck BW; MacArthur R; Inglese J
    Curr Protoc Neurosci; 2017 Apr; 79():5.32.1-5.32.27. PubMed ID: 28398644
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of Titration-Based Screening for the Rapid Pilot Testing of High-Throughput Assays.
    Zhang JH; Kang ZB; Ardayfio O; Ho PI; Smith T; Wallace I; Bowes S; Hill WA; Auld DS
    J Biomol Screen; 2014 Jun; 19(5):651-60. PubMed ID: 24246376
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative high-throughput screening: a titration-based approach that efficiently identifies biological activities in large chemical libraries.
    Inglese J; Auld DS; Jadhav A; Johnson RL; Simeonov A; Yasgar A; Zheng W; Austin CP
    Proc Natl Acad Sci U S A; 2006 Aug; 103(31):11473-8. PubMed ID: 16864780
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced HTS hit selection via a local hit rate analysis.
    Posner BA; Xi H; Mills JE
    J Chem Inf Model; 2009 Oct; 49(10):2202-10. PubMed ID: 19795815
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemogenomic profiling of endogenous PARK2 expression using a genome-edited coincidence reporter.
    Hasson SA; Fogel AI; Wang C; MacArthur R; Guha R; Heman-Ackah S; Martin S; Youle RJ; Inglese J
    ACS Chem Biol; 2015 May; 10(5):1188-97. PubMed ID: 25689131
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-Throughput Firefly Luciferase Reporter Assays.
    Siebring-van Olst E; van Beusechem VW
    Methods Mol Biol; 2018; 1755():19-29. PubMed ID: 29671260
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-Throughput Cell Toxicity Assays.
    Murray D; McWilliams L; Wigglesworth M
    Methods Mol Biol; 2016; 1439():245-62. PubMed ID: 27317000
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-Throughput Screening and Triage Assays Identify Small Molecules Targeting c-MYC in Cancer Cells.
    Kallal LA; Waszkiewicz A; Jaworski JP; Della Pietra A; Berrodin T; Brady P; Jurewicz AJ; Zeng X; Payne L; Medina JR; Doepner-Buser C; Mangatt B
    SLAS Discov; 2021 Feb; 26(2):216-229. PubMed ID: 33482073
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated reporter quantification in vivo: high-throughput screening method for reporter-based assays in zebrafish.
    Walker SL; Ariga J; Mathias JR; Coothankandaswamy V; Xie X; Distel M; Köster RW; Parsons MJ; Bhalla KN; Saxena MT; Mumm JS
    PLoS One; 2012; 7(1):e29916. PubMed ID: 22238673
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Brief Guide: Experimental Strategies for High-Quality Hit Selection from Small-Molecule Screening Campaigns.
    Rothenaigner I; Hadian K
    SLAS Discov; 2021 Aug; 26(7):851-854. PubMed ID: 33882754
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identifying actives from HTS data sets: practical approaches for the selection of an appropriate HTS data-processing method and quality control review.
    Shun TY; Lazo JS; Sharlow ER; Johnston PA
    J Biomol Screen; 2011 Jan; 16(1):1-14. PubMed ID: 21160066
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Quantitative High-Throughput Screening Data Analysis Pipeline for Activity Profiling.
    Huang R
    Methods Mol Biol; 2016; 1473():111-22. PubMed ID: 27518629
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accounting Artifacts in High-Throughput Toxicity Assays.
    Hsieh JH
    Methods Mol Biol; 2016; 1473():143-52. PubMed ID: 27518632
    [TBL] [Abstract][Full Text] [Related]  

  • 14. From c-Photina mouse embryonic stem cells to high-throughput screening of differentiated neural cells via an intermediate step enriched in neural precursor cells.
    Cainarca S; Fenu S; Bovolenta S; Arioli P; Menegon A; Lohmer S; Corazza S
    J Biomol Screen; 2010 Oct; 15(9):1132-43. PubMed ID: 20834010
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lies and Liabilities: Computational Assessment of High-Throughput Screening Hits to Identify Artifact Compounds.
    Alves VM; Yasgar A; Wellnitz J; Rai G; Rath M; Braga RC; Capuzzi SJ; Simeonov A; Muratov EN; Zakharov AV; Tropsha A
    J Med Chem; 2023 Sep; 66(18):12828-12839. PubMed ID: 37677128
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Case studies of minimizing nonspecific inhibitors in HTS campaigns that use assay-ready plates.
    Liu Y; Beresini MH; Johnson A; Mintzer R; Shah K; Clark K; Schmidt S; Lewis C; Liimatta M; Elliott LO; Gustafson A; Heise CE
    J Biomol Screen; 2012 Feb; 17(2):225-36. PubMed ID: 21940710
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Content Reporter Assays.
    Cook E; Hermes J; Li J; Tudor M
    Methods Mol Biol; 2018; 1755():179-195. PubMed ID: 29671271
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-Edited Coincidence and PMP22-HiBiT Fusion Reporter Cell Lines Enable an Artifact-Suppressive Quantitative High-Throughput Screening Strategy for
    Martinez NJ; Braisted JC; Dranchak PK; Moran JJ; Larson H; Queme B; Pak E; Dutra A; Rai G; Cheng KC; Svaren J; Inglese J
    ACS Pharmacol Transl Sci; 2021 Aug; 4(4):1422-1436. PubMed ID: 34423274
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-Edited Cell Lines for High-Throughput Screening.
    Dranchak P; Moran JJ; MacArthur R; Lopez-Anido C; Inglese J; Svaren J
    Methods Mol Biol; 2018; 1755():1-17. PubMed ID: 29671259
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiplexing high-content flow (HCF) and quantitative high-throughput screening (qHTS) to identify compounds capable of decreasing cell viability, activating caspase 3/7, expressing annexin V, and changing mitochondrial membrane integrity.
    Mathews LA; Keller JM; McKnight C; Michael S; Shinn P; Liu D; Staudt LM; Thomas CJ; Ferrer M
    Curr Protoc Chem Biol; 2013; 5(3):195-212. PubMed ID: 24391083
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.