These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Design of Mammalian ON-Riboswitches Based on Tandemly Fused Aptamer and Ribozyme. Mustafina K; Fukunaga K; Yokobayashi Y ACS Synth Biol; 2020 Jan; 9(1):19-25. PubMed ID: 31820936 [TBL] [Abstract][Full Text] [Related]
4. Dual-selection for evolution of in vivo functional aptazymes as riboswitch parts. Goler JA; Carothers JM; Keasling JD Methods Mol Biol; 2014; 1111():221-35. PubMed ID: 24549623 [TBL] [Abstract][Full Text] [Related]
5. Aptazyme-based riboswitches and logic gates in mammalian cells. Nomura Y; Yokobayashi Y Methods Mol Biol; 2015; 1316():141-8. PubMed ID: 25967059 [TBL] [Abstract][Full Text] [Related]
6. Engineering Aptazyme Switches for Conditional Gene Expression in Mammalian Cells Utilizing an In Vivo Screening Approach. Rehm C; Klauser B; Finke M; Hartig JS Methods Mol Biol; 2021; 2323():199-212. PubMed ID: 34086282 [TBL] [Abstract][Full Text] [Related]
7. Engineering aptazyme switches for conditional gene expression in mammalian cells utilizing an in vivo screening approach. Rehm C; Klauser B; Hartig JS Methods Mol Biol; 2015; 1316():127-40. PubMed ID: 25967058 [TBL] [Abstract][Full Text] [Related]
8. Engineering of ribozyme-based riboswitches for mammalian cells. Wieland M; Ausländer D; Fussenegger M Methods; 2012 Mar; 56(3):351-7. PubMed ID: 22305857 [TBL] [Abstract][Full Text] [Related]
9. Synthetic mammalian riboswitches based on guanine aptazyme. Nomura Y; Kumar D; Yokobayashi Y Chem Commun (Camb); 2012 Jul; 48(57):7215-7. PubMed ID: 22692003 [TBL] [Abstract][Full Text] [Related]
10. RNA-based networks: using RNA aptamers and ribozymes as synthetic genetic devices. Weigand JE; Wittmann A; Suess B Methods Mol Biol; 2012; 813():157-68. PubMed ID: 22083741 [TBL] [Abstract][Full Text] [Related]
11. Engineering of ribozyme-based aminoglycoside switches of gene expression by in vivo genetic selection in Saccharomyces cerevisiae. Klauser B; Rehm C; Summerer D; Hartig JS Methods Enzymol; 2015; 550():301-20. PubMed ID: 25605392 [TBL] [Abstract][Full Text] [Related]
12. Aptazyme-Based Riboswitches and Logic Gates in Mammalian Cells. Nomura Y; Yokobayashi Y Methods Mol Biol; 2021; 2323():213-220. PubMed ID: 34086283 [TBL] [Abstract][Full Text] [Related]
13. Screening of Genetic Switches Based on the Twister Ribozyme Motif. Felletti M; Klauser B; Hartig JS Methods Mol Biol; 2016; 1380():225-39. PubMed ID: 26552830 [TBL] [Abstract][Full Text] [Related]
14. In vivo screening for aptazyme-based bacterial riboswitches. Rehm C; Hartig JS Methods Mol Biol; 2014; 1111():237-49. PubMed ID: 24549624 [TBL] [Abstract][Full Text] [Related]
15. Applications of high-throughput sequencing to analyze and engineer ribozymes. Yokobayashi Y Methods; 2019 May; 161():41-45. PubMed ID: 30738128 [TBL] [Abstract][Full Text] [Related]
16. RNA aptamers as genetic control devices: the potential of riboswitches as synthetic elements for regulating gene expression. Berens C; Groher F; Suess B Biotechnol J; 2015 Feb; 10(2):246-57. PubMed ID: 25676052 [TBL] [Abstract][Full Text] [Related]
17. Expanding the toolbox of synthetic riboswitches with guanine-dependent aptazymes. Stifel J; Spöring M; Hartig JS Synth Biol (Oxf); 2019; 4(1):ysy022. PubMed ID: 32995528 [TBL] [Abstract][Full Text] [Related]