These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

584 related articles for article (PubMed ID: 28398812)

  • 1. FMRI Clustering in AFNI: False-Positive Rates Redux.
    Cox RW; Chen G; Glen DR; Reynolds RC; Taylor PA
    Brain Connect; 2017 Apr; 7(3):152-171. PubMed ID: 28398812
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cluster failure: Why fMRI inferences for spatial extent have inflated false-positive rates.
    Eklund A; Nichols TE; Knutsson H
    Proc Natl Acad Sci U S A; 2016 Jul; 113(28):7900-5. PubMed ID: 27357684
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Equitable Thresholding and Clustering: A Novel Method for Functional Magnetic Resonance Imaging Clustering in AFNI.
    Cox RW
    Brain Connect; 2019 Sep; 9(7):529-538. PubMed ID: 31115252
    [TBL] [Abstract][Full Text] [Related]  

  • 4. False positive rates in surface-based anatomical analysis.
    Greve DN; Fischl B
    Neuroimage; 2018 May; 171():6-14. PubMed ID: 29288131
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cluster-level statistical inference in fMRI datasets: The unexpected behavior of random fields in high dimensions.
    Bansal R; Peterson BS
    Magn Reson Imaging; 2018 Jun; 49():101-115. PubMed ID: 29408478
    [TBL] [Abstract][Full Text] [Related]  

  • 6. False positive rates in positron emission tomography (PET) voxelwise analyses.
    Ganz M; Nørgaard M; Beliveau V; Svarer C; Knudsen GM; Greve DN
    J Cereb Blood Flow Metab; 2021 Jul; 41(7):1647-1657. PubMed ID: 33241770
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cluster-extent based thresholding in fMRI analyses: pitfalls and recommendations.
    Woo CW; Krishnan A; Wager TD
    Neuroimage; 2014 May; 91():412-9. PubMed ID: 24412399
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accounting for Non-Gaussian Sources of Spatial Correlation in Parametric Functional Magnetic Resonance Imaging Paradigms II: A Method to Obtain First-Level Analysis Residuals with Uniform and Gaussian Spatial Autocorrelation Function and Independent and Identically Distributed Time-Series.
    Gopinath K; Krishnamurthy V; Lacey S; Sathian K
    Brain Connect; 2018 Feb; 8(1):10-21. PubMed ID: 29161884
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accounting for Non-Gaussian Sources of Spatial Correlation in Parametric Functional Magnetic Resonance Imaging Paradigms I: Revisiting Cluster-Based Inferences.
    Gopinath K; Krishnamurthy V; Sathian K
    Brain Connect; 2018 Feb; 8(1):1-9. PubMed ID: 28927289
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cluster success: fMRI inferences for spatial extent have acceptable false-positive rates.
    Slotnick SD
    Cogn Neurosci; 2017 Jul; 8(3):150-155. PubMed ID: 28403749
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of fMRI motion correction software tools.
    Oakes TR; Johnstone T; Ores Walsh KS; Greischar LL; Alexander AL; Fox AS; Davidson RJ
    Neuroimage; 2005 Nov; 28(3):529-43. PubMed ID: 16099178
    [TBL] [Abstract][Full Text] [Related]  

  • 12. False positives in neuroimaging genetics using voxel-based morphometry data.
    Silver M; Montana G; Nichols TE;
    Neuroimage; 2011 Jan; 54(2):992-1000. PubMed ID: 20849959
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impacting the effect of fMRI noise through hardware and acquisition choices - Implications for controlling false positive rates.
    Wald LL; Polimeni JR
    Neuroimage; 2017 Jul; 154():15-22. PubMed ID: 28039092
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Updated Survey on Statistical Thresholding and Sample Size of fMRI Studies.
    Yeung AWK
    Front Hum Neurosci; 2018; 12():16. PubMed ID: 29434545
    [No Abstract]   [Full Text] [Related]  

  • 15. Resting-state fMRI data reflects default network activity rather than null data: A defense of commonly employed methods to correct for multiple comparisons.
    Slotnick SD
    Cogn Neurosci; 2017 Jul; 8(3):141-143. PubMed ID: 28002981
    [TBL] [Abstract][Full Text] [Related]  

  • 16. When the Single Matters more than the Group (II): Addressing the Problem of High False Positive Rates in Single Case Voxel Based Morphometry Using Non-parametric Statistics.
    Scarpazza C; Nichols TE; Seramondi D; Maumet C; Sartori G; Mechelli A
    Front Neurosci; 2016; 10():6. PubMed ID: 26834533
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A cluster mass permutation test with contextual enhancement for fMRI activation detection.
    Tillikainen L; Salli E; Korvenoja A; Aronen HJ
    Neuroimage; 2006 Aug; 32(2):654-64. PubMed ID: 16769226
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Untangling the relatedness among correlations, Part II: Inter-subject correlation group analysis through linear mixed-effects modeling.
    Chen G; Taylor PA; Shin YW; Reynolds RC; Cox RW
    Neuroimage; 2017 Feb; 147():825-840. PubMed ID: 27751943
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluating methods of correcting for multiple comparisons implemented in SPM12 in social neuroscience fMRI studies: an example from moral psychology.
    Han H; Glenn AL
    Soc Neurosci; 2018 Jun; 13(3):257-267. PubMed ID: 28446105
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlling the false positive rate in fuzzy clustering using randomization: application to fMRI activation detection.
    Jahanian H; Hossein-Zadeh GA; Soltanian-Zadeh H; Ardekani BA
    Magn Reson Imaging; 2004 Jun; 22(5):631-8. PubMed ID: 15172056
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.