These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 28398904)

  • 21. Photoelectrochemical behavior of nanostructured WO3 thin-film electrodes: The oxidation of formic acid.
    Monllor-Satoca D; Borja L; Rodes A; Gómez R; Salvador P
    Chemphyschem; 2006 Dec; 7(12):2540-51. PubMed ID: 17072939
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Efficient photoelectrochemical water oxidation over cobalt-phosphate (Co-Pi) catalyst modified BiVO4/1D-WO3 heterojunction electrodes.
    Pilli SK; Janarthanan R; Deutsch TG; Furtak TE; Brown LD; Turner JA; Herring AM
    Phys Chem Chem Phys; 2013 Sep; 15(35):14723-8. PubMed ID: 23900229
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pd-Doped WO
    Ponnusamy R; Chakraborty B; Rout CS
    J Phys Chem B; 2018 Mar; 122(10):2737-2746. PubMed ID: 29455530
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structural and photoelectrochemical properties in the thin film system Cu-Fe-V-O and its ternary subsystems Fe-V-O and Cu-V-O.
    Kumari S; Junqueira JRC; Sarker S; Mehta A; Schuhmann W; Ludwig A
    J Chem Phys; 2020 Jul; 153(1):014707. PubMed ID: 32640827
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhanced Photo-Assisted Acetone Gas Sensor and Efficient Photocatalytic Degradation Using Fe-Doped Hexagonal and Monoclinic WO
    Wang JC; Shi W; Sun XQ; Wu FY; Li Y; Hou Y
    Nanomaterials (Basel); 2020 Feb; 10(2):. PubMed ID: 32102397
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A novel photoelectrochemical sensor based on PPIX-functionalized WO3-rGO nanohybrid-decorated ITO electrode for detecting cysteine.
    Sun B; Zhang K; Chen L; Guo L; Ai S
    Biosens Bioelectron; 2013 Jun; 44():48-51. PubMed ID: 23391706
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A novel tungsten trioxide (WO3)/ITO porous nanocomposite for enhanced photo-catalytic water splitting.
    Ishihara H; Kannarpady GK; Khedir KR; Woo J; Trigwell S; Biris AS
    Phys Chem Chem Phys; 2011 Nov; 13(43):19553-60. PubMed ID: 21970978
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of the Iron as a Dopant on the Refractive Index of WO
    Osiac M; Boerasu I; Radu MS; Jigau M; Tirca I
    Materials (Basel); 2021 Oct; 14(19):. PubMed ID: 34640241
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In situ synthesis of Bi2S3 sensitized WO3 nanoplate arrays with less interfacial defects and enhanced photoelectrochemical performance.
    Liu C; Yang Y; Li W; Li J; Li Y; Chen Q
    Sci Rep; 2016 Mar; 6():23451. PubMed ID: 26988275
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A significant cathodic shift in the onset potential and enhanced photoelectrochemical water splitting using Au nanoparticles decorated WO3 nanorod array.
    Xu F; Yao Y; Bai D; Xu R; Mei J; Wu D; Gao Z; Jiang K
    J Colloid Interface Sci; 2015 Nov; 458():194-9. PubMed ID: 26218199
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effect of morphology and crystal structure on the photocatalytic and photoelectrochemical performances of WO
    Li L; Li J; Kim BH; Huang J
    RSC Adv; 2024 Jan; 14(3):2080-2087. PubMed ID: 38196906
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Highly Efficient Photoelectrochemical Hydrogen Generation Using Zn(x)Bi2S(3+x) Sensitized Platelike WO₃ Photoelectrodes.
    Liu C; Yang Y; Li W; Li J; Li Y; Shi Q; Chen Q
    ACS Appl Mater Interfaces; 2015 May; 7(20):10763-70. PubMed ID: 25942616
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fabrication and Enhanced Photoelectrochemical Performance of MoS₂/S-Doped g-C₃N₄ Heterojunction Film.
    Ye L; Wang D; Chen S
    ACS Appl Mater Interfaces; 2016 Mar; 8(8):5280-9. PubMed ID: 26864284
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effective silicon nanowire arrays/WO
    Chen Z; Ning M; Ma G; Meng Q; Zhang Y; Gao J; Jin M; Chen Z; Yuan M; Wang X; Liu JM; Zhou G
    Nanotechnology; 2017 Jul; 28(27):275401. PubMed ID: 28531092
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhanced photoelectrochemical water splitting performance of TiO2 nanotube arrays coated with an ultrathin nitrogen-doped carbon film by molecular layer deposition.
    Tong X; Yang P; Wang Y; Qin Y; Guo X
    Nanoscale; 2014 Jun; 6(12):6692-700. PubMed ID: 24816496
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Preparation of 24 ternary thin film materials libraries on a single substrate in one experiment for irreversible high-throughput studies.
    Buenconsejo PJ; Siegel A; Savan A; Thienhaus S; Ludwig A
    ACS Comb Sci; 2012 Jan; 14(1):25-30. PubMed ID: 22126321
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fabrication of TiO
    Lu WC; Tseng LC; Chang KS
    ACS Comb Sci; 2017 Sep; 19(9):585-593. PubMed ID: 28745488
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Low-Temperature Atomic Layer Deposition of Crystalline and Photoactive Ultrathin Hematite Films for Solar Water Splitting.
    Steier L; Luo J; Schreier M; Mayer MT; Sajavaara T; Grätzel M
    ACS Nano; 2015 Dec; 9(12):11775-83. PubMed ID: 26516784
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Porous versus Compact Nanosized Fe(III)-Based Water Oxidation Catalyst for Photoanodes Functionalization.
    Orlandi M; Dalle Carbonare N; Caramori S; Bignozzi CA; Berardi S; Mazzi A; El Koura Z; Bazzanella N; Patel N; Miotello A
    ACS Appl Mater Interfaces; 2016 Aug; 8(31):20003-11. PubMed ID: 27447454
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of structure and size on the electrical properties of nanocrystalline WO3 films.
    Vemuri RS; Bharathi KK; Gullapalli SK; Ramana CV
    ACS Appl Mater Interfaces; 2010 Sep; 2(9):2623-8. PubMed ID: 20809581
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.