These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 28399018)

  • 1. Renal arteriovenous oxygen shunting.
    Kuo W; Kurtcuoglu V
    Curr Opin Nephrol Hypertens; 2017 Jul; 26(4):290-295. PubMed ID: 28399018
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Renal oxygenation: preglomerular vasculature is an unlikely contributor to renal oxygen shunting.
    Olgac U; Kurtcuoglu V
    Am J Physiol Renal Physiol; 2015 Apr; 308(7):F671-88. PubMed ID: 25503734
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A mathematical model of diffusional shunting of oxygen from arteries to veins in the kidney.
    Gardiner BS; Smith DW; O'Connor PM; Evans RG
    Am J Physiol Renal Physiol; 2011 Jun; 300(6):F1339-52. PubMed ID: 21367922
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A pseudo-three-dimensional model for quantification of oxygen diffusion from preglomerular arteries to renal tissue and renal venous blood.
    Lee CJ; Ngo JP; Kar S; Gardiner BS; Evans RG; Smith DW
    Am J Physiol Renal Physiol; 2017 Aug; 313(2):F237-F253. PubMed ID: 28381464
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Bohr Effect Is Not a Likely Promoter of Renal Preglomerular Oxygen Shunting.
    Olgac U; Kurtcuoglu V
    Front Physiol; 2016; 7():482. PubMed ID: 27833564
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diffusive oxygen shunting between vessels in the preglomerular renal vasculature: anatomic observations and computational modeling.
    Gardiner BS; Thompson SL; Ngo JP; Smith DW; Abdelkader A; Broughton BR; Bertram JF; Evans RG
    Am J Physiol Renal Physiol; 2012 Sep; 303(5):F605-18. PubMed ID: 22674022
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Renal preglomerular arterial-venous O2 shunting is a structural anti-oxidant defence mechanism of the renal cortex.
    O'Connor PM; Anderson WP; Kett MM; Evans RG
    Clin Exp Pharmacol Physiol; 2006 Jul; 33(7):637-41. PubMed ID: 16789933
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intrarenal oxygenation: unique challenges and the biophysical basis of homeostasis.
    Evans RG; Gardiner BS; Smith DW; O'Connor PM
    Am J Physiol Renal Physiol; 2008 Nov; 295(5):F1259-70. PubMed ID: 18550645
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms of hypoxia responses in renal tissue.
    Haase VH
    J Am Soc Nephrol; 2013 Mar; 24(4):537-41. PubMed ID: 23334390
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Renal oxygen delivery: matching delivery to metabolic demand.
    O'Connor PM
    Clin Exp Pharmacol Physiol; 2006 Oct; 33(10):961-7. PubMed ID: 17002675
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence that renal arterial-venous oxygen shunting contributes to dynamic regulation of renal oxygenation.
    Leong CL; Anderson WP; O'Connor PM; Evans RG
    Am J Physiol Renal Physiol; 2007 Jun; 292(6):F1726-33. PubMed ID: 17327497
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Haemodynamic influences on kidney oxygenation: clinical implications of integrative physiology.
    Evans RG; Ince C; Joles JA; Smith DW; May CN; O'Connor PM; Gardiner BS
    Clin Exp Pharmacol Physiol; 2013 Feb; 40(2):106-22. PubMed ID: 23167537
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Letter to the editor: "The plausibility of arterial-to-venous oxygen shunting in the kidney: it all depends on radial geometry".
    Evans RG; Smith DW; Khan Z; Ngo JP; Gardiner BS
    Am J Physiol Renal Physiol; 2015 Jul; 309(2):F179-80. PubMed ID: 26180257
    [No Abstract]   [Full Text] [Related]  

  • 14. Reply to "Letter to the editor: 'The plausibility of arterial-to-venous oxygen shunting in the kidney: it all depends on radial geometry'".
    Olgac U; Kurtcuoglu V
    Am J Physiol Renal Physiol; 2015 Jul; 309(2):F181-2. PubMed ID: 26180258
    [No Abstract]   [Full Text] [Related]  

  • 15. Vascular geometry and oxygen diffusion in the vicinity of artery-vein pairs in the kidney.
    Ngo JP; Kar S; Kett MM; Gardiner BS; Pearson JT; Smith DW; Ludbrook J; Bertram JF; Evans RG
    Am J Physiol Renal Physiol; 2014 Nov; 307(10):F1111-22. PubMed ID: 25209866
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural antioxidant defense mechanisms in the mammalian and nonmammalian kidney: different solutions to the same problem?
    O'Connor PM; Evans RG
    Am J Physiol Regul Integr Comp Physiol; 2010 Sep; 299(3):R723-7. PubMed ID: 20660108
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Renal oxidative stress, oxygenation, and hypertension.
    Palm F; Nordquist L
    Am J Physiol Regul Integr Comp Physiol; 2011 Nov; 301(5):R1229-41. PubMed ID: 21832206
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Presence of arteriovenous shunting in transplanted but not in native single kidney in the rat.
    Nilsson L; Sterner G; Ekberg H
    Scand J Urol Nephrol; 1999 Dec; 33(6):363-7. PubMed ID: 10636574
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of hypoxia in the pathogenesis of renal disease.
    Eckardt KU; Bernhardt WM; Weidemann A; Warnecke C; Rosenberger C; Wiesener MS; Willam C
    Kidney Int Suppl; 2005 Dec; (99):S46-51. PubMed ID: 16336576
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diffusive shunting of gases and other molecules in the renal vasculature: physiological and evolutionary significance.
    Ngo JP; Ow CP; Gardiner BS; Kar S; Pearson JT; Smith DW; Evans RG
    Am J Physiol Regul Integr Comp Physiol; 2016 Nov; 311(5):R797-R810. PubMed ID: 27488891
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.