These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 28399045)

  • 41. Renoprotective effects of rosiglitazone in stroke-prone spontaneously hypertensive rats.
    Choi BS; Yang HJ; Ahn KO; Lim SW; Kim SH; Kim JY; Li C; Kim YS; Kim J; Bang BK; Yang CW
    Kidney Blood Press Res; 2007; 30(4):212-23. PubMed ID: 17587863
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Analysis of the genetic basis of the endothelium-dependent impaired vasorelaxation in the stroke-prone spontaneously hypertensive rat: a candidate gene approach.
    Rubattu S; Giliberti R; Russo R; Gigante B; Ganten U; Volpe M
    J Hypertens; 2000 Feb; 18(2):161-5. PubMed ID: 10694183
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Sympathetic regulation of renal function in stroke-prone spontaneously hypertensive rats congenic for chromosome 1 blood pressure quantitative trait loci.
    Wang T; Takabatake T; Kobayashi Y; Nabika T
    Clin Exp Pharmacol Physiol; 2008 Nov; 35(11):1365-70. PubMed ID: 18565192
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cellular and subcellular localization of uncoupling protein 2 in the human kidney.
    Nigro M; De Sanctis C; Formisano P; Stanzione R; Forte M; Capasso G; Gigliotti G; Rubattu S; Viggiano D
    J Mol Histol; 2018 Aug; 49(4):437-445. PubMed ID: 29936692
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Contribution of genetic factors to renal lesions in the stroke-prone spontaneously hypertensive rat.
    Gigante B; Rubattu S; Stanzione R; Lombardi A; Baldi A; Baldi F; Volpe M
    Hypertension; 2003 Oct; 42(4):702-6. PubMed ID: 12874092
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Differential effects of salt on renal hemodynamics and potential pressure transmission in stroke-prone and stroke-resistant spontaneously hypertensive rats.
    Abu-Amarah I; Bidani AK; Hacioglu R; Williamson GA; Griffin KA
    Am J Physiol Renal Physiol; 2005 Aug; 289(2):F305-13. PubMed ID: 15827345
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A twofold genetic increase of ACE expression has no effect on the development of spontaneous hypertension.
    Nassar I; Schulz A; Bernardy C; Garrelds IM; Plehm R; Huber M; Danser AH; Kreutz R
    Am J Hypertens; 2008 Feb; 21(2):200-5. PubMed ID: 18174884
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Demonstration of hereditarily accelerated proliferation in astrocytes derived from spontaneously hypertensive rats.
    Yamagata K; Nara Y; Tagami M; Yamori Y
    Clin Exp Pharmacol Physiol; 1995 Sep; 22(9):605-9. PubMed ID: 8542670
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Fenofibrate attenuates cardiac and renal alterations in young salt-loaded spontaneously hypertensive stroke-prone rats through mitochondrial protection.
    Castiglioni L; Pignieri A; Fiaschè M; Giudici M; Crestani M; Mitro N; Abbate M; Zoja C; Rottoli D; Foray C; Fiordaliso F; Guerrini U; Tremoli E; Sironi L; Gelosa P
    J Hypertens; 2018 May; 36(5):1129-1146. PubMed ID: 29278547
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Genetic linkage of albuminuria and renal injury in Dahl salt-sensitive rats on a high-salt diet: comparison with spontaneously hypertensive rats.
    Siegel AK; Kossmehl P; Planert M; Schulz A; Wehland M; Stoll M; Bruijn JA; de Heer E; Kreutz R
    Physiol Genomics; 2004 Jul; 18(2):218-25. PubMed ID: 15161966
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Choice of diet impacts the incidence of stroke-related symptoms in the spontaneously hypertensive stroke-prone rat model.
    Slemmer JE; Shaughnessy KS; Scanlan AP; Sweeney MI; Gottschall-Pass KT
    Can J Physiol Pharmacol; 2012 Feb; 90(2):243-8. PubMed ID: 22316284
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Interaction between chromosome 2 and 3 regulates pulse pressure in the stroke-prone spontaneously hypertensive rat.
    Koh-Tan HH; McBride MW; McClure JD; Beattie E; Young B; Dominiczak AF; Graham D
    Hypertension; 2013 Jul; 62(1):33-40. PubMed ID: 23648703
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Sodium preference and excretion in spontaneously hypertensive rats on various diets.
    Wang H; Ikeda K; Kihara M; Nara Y; Horie R; Yamori Y
    Clin Exp Pharmacol Physiol; 1985; 12(2):139-44. PubMed ID: 4006318
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cardiopulmonary responses of Wistar Kyoto, spontaneously hypertensive, and stroke-prone spontaneously hypertensive rats to particulate matter (PM) exposure.
    Wallenborn JG; Schladweiler MC; Nyska A; Johnson JA; Thomas R; Jaskot RH; Richards JH; Ledbetter AD; Kodavanti UP
    J Toxicol Environ Health A; 2007 Nov; 70(22):1912-22. PubMed ID: 17966062
    [TBL] [Abstract][Full Text] [Related]  

  • 55. UCP2-dependent improvement of mitochondrial dynamics protects against acute kidney injury.
    Qin N; Cai T; Ke Q; Yuan Q; Luo J; Mao X; Jiang L; Cao H; Wen P; Zen K; Zhou Y; Yang J
    J Pathol; 2019 Mar; 247(3):392-405. PubMed ID: 30426490
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Sympathetic regulation of the renal functions in rats reciprocally congenic for chromosome 1 blood pressure quantitative trait locus.
    Wang T; Nabika T; Notsu Y; Takabatake T
    Hypertens Res; 2008 Mar; 31(3):561-8. PubMed ID: 18497477
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Polygenic genetic variation affecting antibody formation underlies hypertensive renal injury in the stroke-prone spontaneously hypertensive rat.
    Dhande IS; Zhu Y; Joshi AS; Hicks MJ; Braun MC; Doris PA
    Am J Physiol Renal Physiol; 2023 Sep; 325(3):F317-F327. PubMed ID: 37439198
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Renal function in stroke-prone rats fed a high-K+ diet.
    Smeda JS
    Can J Physiol Pharmacol; 1997 Jul; 75(7):796-806. PubMed ID: 9315346
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Identification of a common molecular pathway in hypertensive renal damage: comparison of rat and human gene expression profiles.
    Skogstrand T; Leh S; McClure J; Dashti M; Iversen BM; Graham D; McBride MW; Hultström M
    J Hypertens; 2015 Mar; 33(3):584-96; discussion 596. PubMed ID: 25380151
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Neuroprotection by progesterone after transient cerebral ischemia in stroke-prone spontaneously hypertensive rats.
    Yousuf S; Atif F; Sayeed I; Wang J; Stein DG
    Horm Behav; 2016 Aug; 84():29-40. PubMed ID: 27283379
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.