These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
63. Diets enriched in whey or casein improve energy balance and prevent morbidity and renal damage in salt-loaded and high-fat-fed spontaneously hypertensive stroke-prone rats. Singh A; Pezeshki A; Zapata RC; Yee NJ; Knight CG; Tuor UI; Chelikani PK J Nutr Biochem; 2016 Nov; 37():47-59. PubMed ID: 27611102 [TBL] [Abstract][Full Text] [Related]
64. Involvement of thromboxane A2 receptor in the cerebrovascular damage of salt-loaded, stroke-prone rats. Ishizuka T; Niwa A; Tabuchi M; Nagatani Y; Ooshima K; Higashino H J Hypertens; 2007 Apr; 25(4):861-70. PubMed ID: 17351380 [TBL] [Abstract][Full Text] [Related]
65. UCP2 attenuates apoptosis of tubular epithelial cells in renal ischemia-reperfusion injury. Zhou Y; Cai T; Xu J; Jiang L; Wu J; Sun Q; Zen K; Yang J Am J Physiol Renal Physiol; 2017 Oct; 313(4):F926-F937. PubMed ID: 28424210 [TBL] [Abstract][Full Text] [Related]
66. Increased renal iron accumulation in hypertensive nephropathy of salt-loaded hypertensive rats. Naito Y; Sawada H; Oboshi M; Fujii A; Hirotani S; Iwasaku T; Okuhara Y; Eguchi A; Morisawa D; Ohyanagi M; Tsujino T; Masuyama T PLoS One; 2013; 8(10):e75906. PubMed ID: 24116080 [TBL] [Abstract][Full Text] [Related]
67. Effects of high sodium intake on cardiovascular aldosterone synthesis in stroke-prone spontaneously hypertensive rats. Takeda Y; Yoneda T; Demura M; Furukawa K; Miyamori I; Mabuchi H J Hypertens; 2001 Mar; 19(3 Pt 2):635-9. PubMed ID: 11327640 [TBL] [Abstract][Full Text] [Related]
68. Altered gene expression in cerebral capillaries of stroke-prone spontaneously hypertensive rats. Kirsch T; Wellner M; Luft FC; Haller H; Lippoldt A Brain Res; 2001 Aug; 910(1-2):106-15. PubMed ID: 11489260 [TBL] [Abstract][Full Text] [Related]
69. Anti-Inflammatory, Antioxidant, and Antifibrotic Effects of Kefir Peptides on Salt-Induced Renal Vascular Damage and Dysfunction in Aged Stroke-Prone Spontaneously Hypertensive Rats. Chen YH; Chen HL; Fan HC; Tung YT; Kuo CW; Tu MY; Chen CM Antioxidants (Basel); 2020 Aug; 9(9):. PubMed ID: 32858955 [TBL] [Abstract][Full Text] [Related]
70. Effect of tempol and tempol plus catalase on intra-renal haemodynamics in spontaneously hypertensive stroke-prone (SHSP) and Wistar rats. Ahmeda AF; Rae MG; Al Otaibi MF; Anweigi LM; Johns EJ J Physiol Biochem; 2017 May; 73(2):207-214. PubMed ID: 27933463 [TBL] [Abstract][Full Text] [Related]
71. Protective Effects of Japanese Soybean Paste (Miso) on Stroke in Stroke-Prone Spontaneously Hypertensive Rats (SHRSP). Watanabe H; Sasatani M; Doi T; Masaki T; Satoh K; Yoshizumi M Am J Hypertens; 2017 Dec; 31(1):43-47. PubMed ID: 28985324 [TBL] [Abstract][Full Text] [Related]
72. Genetic analysis of genes causing hypertension and stroke in spontaneously hypertensive rats: Gene expression profiles in the kidneys. Watanabe Y; Yoshida M; Yamanishi K; Yamamoto H; Okuzaki D; Nojima H; Yasunaga T; Okamura H; Matsunaga H; Yamanishi H Int J Mol Med; 2015 Sep; 36(3):712-24. PubMed ID: 26165378 [TBL] [Abstract][Full Text] [Related]
73. Mechanism of increased sensitivity to cerebral ischemia following carotid artery occlusion in stroke-prone spontaneously hypertensive rats: importance of genetic factors. Suno M; Kakihana M; Shibota M; Nagaoka A Stroke; 1981; 12(2):246-50. PubMed ID: 7233474 [TBL] [Abstract][Full Text] [Related]
74. Renal hemodynamics and sodium excretion in stroke-prone spontaneously hypertensive rats. Nagaoka A; Kakihana M; Suno M; Hamajo K Am J Physiol; 1981 Sep; 241(3):F244-9. PubMed ID: 7282927 [TBL] [Abstract][Full Text] [Related]
75. Hepatic effects of a fructose diet in the stroke-prone spontaneously hypertensive rat. Brosnan MJ; Carkner RD Am J Hypertens; 2008 Jun; 21(6):708-14. PubMed ID: 18437120 [TBL] [Abstract][Full Text] [Related]
76. Excess salt causes cerebral neuronal apoptosis and inflammation in stroke-prone hypertensive rats through angiotensin II-induced NADPH oxidase activation. Yamamoto E; Tamamaki N; Nakamura T; Kataoka K; Tokutomi Y; Dong YF; Fukuda M; Matsuba S; Ogawa H; Kim-Mitsuyama S Stroke; 2008 Nov; 39(11):3049-56. PubMed ID: 18688015 [TBL] [Abstract][Full Text] [Related]
77. Increased reactive oxygen species in rostral ventrolateral medulla contribute to neural mechanisms of hypertension in stroke-prone spontaneously hypertensive rats. Kishi T; Hirooka Y; Kimura Y; Ito K; Shimokawa H; Takeshita A Circulation; 2004 May; 109(19):2357-62. PubMed ID: 15117836 [TBL] [Abstract][Full Text] [Related]
78. Differential Expression of Sphingolipid Metabolizing Enzymes in Spontaneously Hypertensive Rats: A Possible Substrate for Susceptibility to Brain and Kidney Damage. Pepe G; Cotugno M; Marracino F; Giova S; Capocci L; Forte M; Stanzione R; Bianchi F; Marchitti S; Di Pardo A; Sciarretta S; Rubattu S; Maglione V Int J Mol Sci; 2021 Apr; 22(7):. PubMed ID: 33917593 [TBL] [Abstract][Full Text] [Related]
79. Na+/K+-ATPase alpha isoforms expression in stroke-prone spontaneously hypertensive rat heart ventricles: effect of salt loading and lacidipine treatment. Quintas LE; Noël F; Wibo M Eur J Pharmacol; 2007 Jun; 565(1-3):151-7. PubMed ID: 17451677 [TBL] [Abstract][Full Text] [Related]
80. Reduction of Gstm1 expression in the stroke-prone spontaneously hypertension rat contributes to increased oxidative stress. McBride MW; Brosnan MJ; Mathers J; McLellan LI; Miller WH; Graham D; Hanlon N; Hamilton CA; Polke JM; Lee WK; Dominiczak AF Hypertension; 2005 Apr; 45(4):786-92. PubMed ID: 15699453 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]