These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 28399481)

  • 1. Chlorinated phenol treatment and in situ hydrogen peroxide production in a sulfate-reducing bacteria enriched bioelectrochemical system.
    Miran W; Nawaz M; Jang J; Lee DS
    Water Res; 2017 Jun; 117():198-206. PubMed ID: 28399481
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dechlorination of 4-chlorophenol to phenol in bioelectrochemical systems.
    Wen Q; Yang T; Wang S; Chen Y; Cong L; Qu Y
    J Hazard Mater; 2013 Jan; 244-245():743-9. PubMed ID: 23183343
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Removal of organic matters and nitrogenous pollutants simultaneously from two different wastewaters using biocathode microbial fuel cell.
    Sevda S; Sreekrishnan TR
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2014 Sep; 49(11):1265-75. PubMed ID: 24967560
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance of a single-chamber microbial fuel cell degrading phenol: effect of phenol concentration and external resistance.
    Buitrón G; Moreno-Andrade I
    Appl Biochem Biotechnol; 2014 Dec; 174(7):2471-81. PubMed ID: 25227685
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sulfate-reducing mixed communities with the ability to generate bioelectricity and degrade textile diazo dye in microbial fuel cells.
    Miran W; Jang J; Nawaz M; Shahzad A; Lee DS
    J Hazard Mater; 2018 Jun; 352():70-79. PubMed ID: 29573731
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient sulfur cycling improved the performance of flowback water treatment in a microbial fuel cell.
    Zhang X; Wei S; Zhang D; Lu P; Huang Y
    J Environ Manage; 2022 Dec; 323():116368. PubMed ID: 36261973
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Concurrent desalination and hydrogen generation using microbial electrolysis and desalination cells.
    Luo H; Jenkins PE; Ren Z
    Environ Sci Technol; 2011 Jan; 45(1):340-4. PubMed ID: 21121677
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced performance of sulfate reducing bacteria based biocathode using stainless steel mesh on activated carbon fabric electrode.
    Sharma M; Jain P; Varanasi JL; Lal B; Rodríguez J; Lema JM; Sarma PM
    Bioresour Technol; 2013 Dec; 150():172-80. PubMed ID: 24161648
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sustainable approach for leachate treatment: electricity generation in microbial fuel cell.
    You SJ; Zhao QL; Jiang JQ; Zhang JN; Zhao SQ
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2006; 41(12):2721-34. PubMed ID: 17114103
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Power production and wastewater treatment simultaneously by dual-chamber microbial fuel cell technique.
    Izadi P; Rahimnejad M; Ghoreyshi A
    Biotechnol Appl Biochem; 2015; 62(4):483-8. PubMed ID: 25640146
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioelectricity production from wastewater treatment in dual chambered microbial fuel cell (MFC) using selectively enriched mixed microflora: Effect of catholyte.
    Venkata Mohan S; Saravanan R; Raghavulu SV; Mohanakrishna G; Sarma PN
    Bioresour Technol; 2008 Feb; 99(3):596-603. PubMed ID: 17321135
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced oxytetracycline removal coupling with increased power generation using a self-sustained photo-bioelectrochemical fuel cell.
    Sun J; Xu W; Yang P; Li N; Yuan Y; Zhang H; Wang Y; Ning X; Zhang Y; Chang K; Peng Y; Chen K
    Chemosphere; 2019 Apr; 221():21-29. PubMed ID: 30634145
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrated system of electro-catalytic oxidation and microbial fuel cells for the treatment of recalcitrant wastewater.
    Chen S; Wang X; Shi X; Li S; Yang L; Yan W; Xu H
    Chemosphere; 2024 Apr; 354():141754. PubMed ID: 38508464
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of salt concentration and mediators in salt bridge microbial fuel cell for electricity generation from synthetic wastewater.
    Sevda S; Sreekrishnan TR
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2012; 47(6):878-86. PubMed ID: 22423995
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitrate removal from groundwater driven by electricity generation and heterotrophic denitrification in a bioelectrochemical system.
    Tong Y; He Z
    J Hazard Mater; 2013 Nov; 262():614-9. PubMed ID: 24096001
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An MEC-MFC-coupled system for biohydrogen production from acetate.
    Sun M; Sheng GP; Zhang L; Xia CR; Mu ZX; Liu XW; Wang HL; Yu HQ; Qi R; Yu T; Yang M
    Environ Sci Technol; 2008 Nov; 42(21):8095-100. PubMed ID: 19031908
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using single-chamber microbial fuel cells as renewable power sources of electro-Fenton reactors for organic pollutant treatment.
    Zhu X; Logan BE
    J Hazard Mater; 2013 May; 252-253():198-203. PubMed ID: 23523911
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Innovative self-powered submersible microbial electrolysis cell (SMEC) for biohydrogen production from anaerobic reactors.
    Zhang Y; Angelidaki I
    Water Res; 2012 May; 46(8):2727-36. PubMed ID: 22402271
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sulfate and organic carbon removal by microbial fuel cell with sulfate-reducing bacteria and sulfide-oxidising bacteria anodic biofilm.
    Lee DJ; Liu X; Weng HL
    Bioresour Technol; 2014 Mar; 156():14-9. PubMed ID: 24480414
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Autotrophic biocathode for high efficient sulfate reduction in microbial electrolysis cells.
    Luo H; Fu S; Liu G; Zhang R; Bai Y; Luo X
    Bioresour Technol; 2014 Sep; 167():462-8. PubMed ID: 25006022
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.