These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 28399630)
1. A Direct Observation of the Fine Aromatic Clusters and Molecular Structures of Biochars. Xiao X; Chen B Environ Sci Technol; 2017 May; 51(10):5473-5482. PubMed ID: 28399630 [TBL] [Abstract][Full Text] [Related]
2. Synthesis and characterization of exfoliated biochar from four agricultural feedstock. Roy S; Kumar U; Bhattacharyya P Environ Sci Pollut Res Int; 2019 Mar; 26(7):7272-7276. PubMed ID: 30661167 [TBL] [Abstract][Full Text] [Related]
3. Fundamental and molecular composition characteristics of biochars produced from sugarcane and rice crop residues and by-products. Jeong CY; Dodla SK; Wang JJ Chemosphere; 2016 Jan; 142():4-13. PubMed ID: 26058554 [TBL] [Abstract][Full Text] [Related]
4. Characteristics of biochars from crop residues: potential for carbon sequestration and soil amendment. Windeatt JH; Ross AB; Williams PT; Forster PM; Nahil MA; Singh S J Environ Manage; 2014 Dec; 146():189-197. PubMed ID: 25173727 [TBL] [Abstract][Full Text] [Related]
5. Quantifying the total and bioavailable polycyclic aromatic hydrocarbons and dioxins in biochars. Hale SE; Lehmann J; Rutherford D; Zimmerman AR; Bachmann RT; Shitumbanuma V; O'Toole A; Sundqvist KL; Arp HP; Cornelissen G Environ Sci Technol; 2012 Mar; 46(5):2830-8. PubMed ID: 22321025 [TBL] [Abstract][Full Text] [Related]
6. Characteristics of maize biochar with different pyrolysis temperatures and its effects on organic carbon, nitrogen and enzymatic activities after addition to fluvo-aquic soil. Wang X; Zhou W; Liang G; Song D; Zhang X Sci Total Environ; 2015 Dec; 538():137-44. PubMed ID: 26298256 [TBL] [Abstract][Full Text] [Related]
7. Attenuation of phenanthrene and pyrene adsorption by sewage sludge-derived biochar in biochar-amended soils. Zielińska A; Oleszczuk P Environ Sci Pollut Res Int; 2016 Nov; 23(21):21822-21832. PubMed ID: 27523043 [TBL] [Abstract][Full Text] [Related]
8. Transformation, morphology, and dissolution of silicon and carbon in rice straw-derived biochars under different pyrolytic temperatures. Xiao X; Chen B; Zhu L Environ Sci Technol; 2014 Mar; 48(6):3411-9. PubMed ID: 24601595 [TBL] [Abstract][Full Text] [Related]
9. Comparative analysis of pinewood, peanut shell, and bamboo biomass derived biochars produced via hydrothermal conversion and pyrolysis. Huff MD; Kumar S; Lee JW J Environ Manage; 2014 Dec; 146():303-308. PubMed ID: 25190598 [TBL] [Abstract][Full Text] [Related]
10. Effect of pyrolysis temperature on chemical and surface properties of biochar of rapeseed (Brassica napus L.). Angin D; Sensöz S Int J Phytoremediation; 2014; 16(7-12):684-93. PubMed ID: 24933878 [TBL] [Abstract][Full Text] [Related]
11. Characterization of slow pyrolysis biochars: effects of feedstocks and pyrolysis temperature on biochar properties. Kloss S; Zehetner F; Dellantonio A; Hamid R; Ottner F; Liedtke V; Schwanninger M; Gerzabek MH; Soja G J Environ Qual; 2012; 41(4):990-1000. PubMed ID: 22751041 [TBL] [Abstract][Full Text] [Related]
12. Nitrogen enrichment potential of biochar in relation to pyrolysis temperature and feedstock quality. Jassal RS; Johnson MS; Molodovskaya M; Black TA; Jollymore A; Sveinson K J Environ Manage; 2015 Apr; 152():140-4. PubMed ID: 25621388 [TBL] [Abstract][Full Text] [Related]
13. Effect of pyrolysis temperature on characteristics and aromatic contaminants adsorption behavior of magnetic biochar derived from pyrolysis oil distillation residue. Li H; Mahyoub SAA; Liao W; Xia S; Zhao H; Guo M; Ma P Bioresour Technol; 2017 Jan; 223():20-26. PubMed ID: 27771526 [TBL] [Abstract][Full Text] [Related]
14. Characterisation of agricultural waste-derived biochars and their sorption potential for sulfamethoxazole in pasture soil: a spectroscopic investigation. Srinivasan P; Sarmah AK Sci Total Environ; 2015 Jan; 502():471-80. PubMed ID: 25290589 [TBL] [Abstract][Full Text] [Related]
15. Size distribution of carbon layer planes in biochar from different plant type of feedstock with different heating temperatures. Lu GY; Ikeya K; Watanabe A Chemosphere; 2016 Nov; 163():252-258. PubMed ID: 27537403 [TBL] [Abstract][Full Text] [Related]
16. Greenhouse gas emissions and soil properties following amendment with manure-derived biochars: Influence of pyrolysis temperature and feedstock type. Subedi R; Taupe N; Pelissetti S; Petruzzelli L; Bertora C; Leahy JJ; Grignani C J Environ Manage; 2016 Jan; 166():73-83. PubMed ID: 26484602 [TBL] [Abstract][Full Text] [Related]
17. Application of biochar from sewage sludge to plant cultivation: Influence of pyrolysis temperature and biochar-to-soil ratio on yield and heavy metal accumulation. Song XD; Xue XY; Chen DZ; He PJ; Dai XH Chemosphere; 2014 Aug; 109():213-20. PubMed ID: 24582602 [TBL] [Abstract][Full Text] [Related]
18. Mineral-Biochar Composites: Molecular Structure and Porosity. Rawal A; Joseph SD; Hook JM; Chia CH; Munroe PR; Donne S; Lin Y; Phelan D; Mitchell DR; Pace B; Horvat J; Webber JB Environ Sci Technol; 2016 Jul; 50(14):7706-14. PubMed ID: 27284608 [TBL] [Abstract][Full Text] [Related]
19. Enhancement of chromate reduction in soils by surface modified biochar. Mandal S; Sarkar B; Bolan N; Ok YS; Naidu R J Environ Manage; 2017 Jan; 186(Pt 2):277-284. PubMed ID: 27229360 [TBL] [Abstract][Full Text] [Related]
20. Biochar and earthworm effects on soil nitrous oxide and carbon dioxide emissions. Augustenborg CA; Hepp S; Kammann C; Hagan D; Schmidt O; Müller C J Environ Qual; 2012; 41(4):1203-9. PubMed ID: 22751063 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]