BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 28399795)

  • 1. Pan-cancer analysis of systematic batch effects on somatic sequence variations.
    Choi JH; Hong SE; Woo HG
    BMC Bioinformatics; 2017 Apr; 18(1):211. PubMed ID: 28399795
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Substantial batch effects in TCGA exome sequences undermine pan-cancer analysis of germline variants.
    Rasnic R; Brandes N; Zuk O; Linial M
    BMC Cancer; 2019 Aug; 19(1):783. PubMed ID: 31391007
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pan-cancer analysis reveals technical artifacts in TCGA germline variant calls.
    Buckley AR; Standish KA; Bhutani K; Ideker T; Lasken RS; Carter H; Harismendy O; Schork NJ
    BMC Genomics; 2017 Jun; 18(1):458. PubMed ID: 28606096
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scalable Open Science Approach for Mutation Calling of Tumor Exomes Using Multiple Genomic Pipelines.
    Ellrott K; Bailey MH; Saksena G; Covington KR; Kandoth C; Stewart C; Hess J; Ma S; Chiotti KE; McLellan M; Sofia HJ; Hutter C; Getz G; Wheeler D; Ding L; ;
    Cell Syst; 2018 Mar; 6(3):271-281.e7. PubMed ID: 29596782
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Origins and characterization of variants shared between databases of somatic and germline human mutations.
    Meyerson W; Leisman J; Navarro FCP; Gerstein M
    BMC Bioinformatics; 2020 Jun; 21(1):227. PubMed ID: 32498674
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Practical Guide to The Cancer Genome Atlas (TCGA).
    Wang Z; Jensen MA; Zenklusen JC
    Methods Mol Biol; 2016; 1418():111-41. PubMed ID: 27008012
    [TBL] [Abstract][Full Text] [Related]  

  • 7. iCAGES: integrated CAncer GEnome Score for comprehensively prioritizing driver genes in personal cancer genomes.
    Dong C; Guo Y; Yang H; He Z; Liu X; Wang K
    Genome Med; 2016 Dec; 8(1):135. PubMed ID: 28007024
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Whole-Genome Sequence Accuracy Is Improved by Replication in a Population of Mutagenized Sorghum.
    Addo-Quaye C; Tuinstra M; Carraro N; Weil C; Dilkes BP
    G3 (Bethesda); 2018 Mar; 8(3):1079-1094. PubMed ID: 29378822
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A computational approach to distinguish somatic vs. germline origin of genomic alterations from deep sequencing of cancer specimens without a matched normal.
    Sun JX; He Y; Sanford E; Montesion M; Frampton GM; Vignot S; Soria JC; Ross JS; Miller VA; Stephens PJ; Lipson D; Yelensky R
    PLoS Comput Biol; 2018 Feb; 14(2):e1005965. PubMed ID: 29415044
    [TBL] [Abstract][Full Text] [Related]  

  • 10. INDELseek: detection of complex insertions and deletions from next-generation sequencing data.
    Au CH; Leung AY; Kwong A; Chan TL; Ma ES
    BMC Genomics; 2017 Jan; 18(1):16. PubMed ID: 28056804
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TP53 Variations in Human Cancers: New Lessons from the IARC TP53 Database and Genomics Data.
    Bouaoun L; Sonkin D; Ardin M; Hollstein M; Byrnes G; Zavadil J; Olivier M
    Hum Mutat; 2016 Sep; 37(9):865-76. PubMed ID: 27328919
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exome-Scale Discovery of Hotspot Mutation Regions in Human Cancer Using 3D Protein Structure.
    Tokheim C; Bhattacharya R; Niknafs N; Gygax DM; Kim R; Ryan M; Masica DL; Karchin R
    Cancer Res; 2016 Jul; 76(13):3719-31. PubMed ID: 27197156
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance characteristics of the AmpliSeq Cancer Hotspot panel v2 in combination with the Ion Torrent Next Generation Sequencing Personal Genome Machine.
    Butler KS; Young MY; Li Z; Elespuru RK; Wood SC
    Regul Toxicol Pharmacol; 2016 Feb; 74():178-86. PubMed ID: 26387931
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pan-cancer analysis of expressed somatic nucleotide variants in long intergenic non-coding RNA.
    Ching T; Garmire LX
    Pac Symp Biocomput; 2018; 23():512-523. PubMed ID: 29218910
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hotspot mutations delineating diverse mutational signatures and biological utilities across cancer types.
    Chen T; Wang Z; Zhou W; Chong Z; Meric-Bernstam F; Mills GB; Chen K
    BMC Genomics; 2016 Jun; 17 Suppl 2(Suppl 2):394. PubMed ID: 27356755
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A method to reduce ancestry related germline false positives in tumor only somatic variant calling.
    Halperin RF; Carpten JD; Manojlovic Z; Aldrich J; Keats J; Byron S; Liang WS; Russell M; Enriquez D; Claasen A; Cherni I; Awuah B; Oppong J; Wicha MS; Newman LA; Jaigge E; Kim S; Craig DW
    BMC Med Genomics; 2017 Oct; 10(1):61. PubMed ID: 29052513
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Frequent mutations in acetylation and ubiquitination sites suggest novel driver mechanisms of cancer.
    Narayan S; Bader GD; Reimand J
    Genome Med; 2016 May; 8(1):55. PubMed ID: 27175787
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of coding and non-coding mutational hotspots in cancer genomes.
    Piraino SW; Furney SJ
    BMC Genomics; 2017 Jan; 18(1):17. PubMed ID: 28056774
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A pan-cancer study of copy number gain and up-regulation in human oncogenes.
    Wee Y; Wang T; Liu Y; Li X; Zhao M
    Life Sci; 2018 Oct; 211():206-214. PubMed ID: 30243646
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sequencing Errors Rife in Genome Databases.
    Cancer Discov; 2017 Apr; 7(4):344-345. PubMed ID: 28242753
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.