These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
217 related articles for article (PubMed ID: 28399809)
1. Transcriptomic profiling of two Pak Choi varieties with contrasting anthocyanin contents provides an insight into structural and regulatory genes in anthocyanin biosynthetic pathway. Zhang L; Xu B; Wu T; Yang Y; Fan L; Wen M; Sui J BMC Genomics; 2017 Apr; 18(1):288. PubMed ID: 28399809 [TBL] [Abstract][Full Text] [Related]
2. Transcriptome profiling of two contrasting ornamental cabbage (Brassica oleracea var. acephala) lines provides insights into purple and white inner leaf pigmentation. Jin SW; Rahim MA; Afrin KS; Park JI; Kang JG; Nou IS BMC Genomics; 2018 Nov; 19(1):797. PubMed ID: 30400854 [TBL] [Abstract][Full Text] [Related]
3. Identification and characterization of the gene BraANS.A03 associated with purple leaf color in pak choi (Brassica rapa L. ssp. chinensis). Tan C; Chen H; Dai G; Liu Y; Shen W; Wang C; Liu D; Liu S; Xu S; Zhu B; Chen D; Cui C Planta; 2023 Jun; 258(1):19. PubMed ID: 37314587 [TBL] [Abstract][Full Text] [Related]
4. Effects of low light on photosynthetic properties, antioxidant enzyme activity, and anthocyanin accumulation in purple pak-choi (Brassica campestris ssp. Chinensis Makino). Zhu H; Li X; Zhai W; Liu Y; Gao Q; Liu J; Ren L; Chen H; Zhu Y PLoS One; 2017; 12(6):e0179305. PubMed ID: 28609452 [TBL] [Abstract][Full Text] [Related]
5. Transcriptomic analysis of Pak Choi under acute ozone exposure revealed regulatory mechanism against ozone stress. Zhang L; Xu B; Wu T; Wen MX; Fan LX; Feng ZZ; Paoletti E BMC Plant Biol; 2017 Dec; 17(1):236. PubMed ID: 29216819 [TBL] [Abstract][Full Text] [Related]
6. Integrated metabolome and transcriptome analyses reveal the role of BoGSTF12 in anthocyanin accumulation in Chinese kale (Brassica oleracea var. alboglabra). Tang K; Karamat U; Li G; Guo J; Jiang S; Fu M; Yang X BMC Plant Biol; 2024 Apr; 24(1):335. PubMed ID: 38664614 [TBL] [Abstract][Full Text] [Related]
7. Laser capture microdissection transcriptome (LCM RNA-seq) reveals BcDFR is a key gene in anthocyanin synthesis of non-heading Chinese cabbage. Zhou Q; Xu X; Li M; Yang X; Wang M; Li Y; Hou X; Liu T BMC Genomics; 2024 Apr; 25(1):425. PubMed ID: 38684983 [TBL] [Abstract][Full Text] [Related]
8. Metabolic and Transcriptomic Analyses Reveal Different Metabolite Biosynthesis Profiles between Purple and Green Pak Choi. Wang J; Hu T; Wang Y; Wang W; Hu H; Wei Q; Yan Y; Bao C Int J Mol Sci; 2023 Sep; 24(18):. PubMed ID: 37762090 [TBL] [Abstract][Full Text] [Related]
9. Red Chinese Cabbage Transcriptome Analysis Reveals Structural Genes and Multiple Transcription Factors Regulating Reddish Purple Color. Rameneni JJ; Choi SR; Chhapekar SS; Kim MS; Singh S; Yi SY; Oh SH; Kim H; Lee CY; Oh MH; Lee J; Kwon OH; Park SU; Kim SJ; Lim YP Int J Mol Sci; 2020 Apr; 21(8):. PubMed ID: 32326209 [TBL] [Abstract][Full Text] [Related]
10. Transcriptome Analysis Reveals Roles of Anthocyanin- and Jasmonic Acid-Biosynthetic Pathways in Rapeseed in Response to High Light Stress. Luo Y; Teng S; Yin H; Zhang S; Tuo X; Tran LP Int J Mol Sci; 2021 Dec; 22(23):. PubMed ID: 34884828 [TBL] [Abstract][Full Text] [Related]
11. Discovery of genes involved in anthocyanin biosynthesis from the rind and pith of three sugarcane varieties using integrated metabolic profiling and RNA-seq analysis. Ni Y; Chen H; Liu D; Zeng L; Chen P; Liu C BMC Plant Biol; 2021 May; 21(1):214. PubMed ID: 33980175 [TBL] [Abstract][Full Text] [Related]
12. Comparative Transcriptome Analysis of Purple and Green Non-Heading Chinese Cabbage and Function Analyses of Tang L; Xiao D; Yin Y; Wang H; Wang J; Liu T; Hou X; Li Y Genes (Basel); 2022 May; 13(6):. PubMed ID: 35741750 [TBL] [Abstract][Full Text] [Related]
13. Transcriptome Analysis of Purple Pericarps in Common Wheat (Triticum aestivum L.). Liu D; Li S; Chen W; Zhang B; Liu D; Liu B; Zhang H PLoS One; 2016; 11(5):e0155428. PubMed ID: 27171148 [TBL] [Abstract][Full Text] [Related]
14. De novo transcriptome sequencing of radish (Raphanus sativus L.) fleshy roots: analysis of major genes involved in the anthocyanin synthesis pathway. Gao J; Li WB; Liu HF; Chen FB BMC Mol Cell Biol; 2019 Oct; 20(1):45. PubMed ID: 31646986 [TBL] [Abstract][Full Text] [Related]
15. Anthocyanin Accumulation and Molecular Analysis of Correlated Genes in Purple Kohlrabi (Brassica oleracea var. gongylodes L.). Zhang Y; Hu Z; Zhu M; Zhu Z; Wang Z; Tian S; Chen G J Agric Food Chem; 2015 Apr; 63(16):4160-9. PubMed ID: 25853486 [TBL] [Abstract][Full Text] [Related]
16. A comparative transcriptome analysis of a wild purple potato and its red mutant provides insight into the mechanism of anthocyanin transformation. Liu F; Yang Y; Gao J; Ma C; Bi Y PLoS One; 2018; 13(1):e0191406. PubMed ID: 29360842 [TBL] [Abstract][Full Text] [Related]
17. Molecular analysis of anthocyanin-related genes in ornamental cabbage. Jin SW; Rahim MA; Kim HT; Park JI; Kang JG; Nou IS Genome; 2018 Feb; 61(2):111-120. PubMed ID: 29232522 [TBL] [Abstract][Full Text] [Related]
18. RNA-Seq-Based Profiling of Xu R; Pan R; Zhang Y; Feng Y; Nath UK; Gan Y; Shi C; Akhter D Int J Mol Sci; 2021 Sep; 22(18):. PubMed ID: 34575968 [TBL] [Abstract][Full Text] [Related]
19. Transcriptome analysis of green and purple fruited pepper provides insight into novel regulatory genes in anthocyanin biosynthesis. Tan H; Li L; Tie M; Lu R; Pan S; Tang Y PeerJ; 2024; 12():e16792. PubMed ID: 38250728 [TBL] [Abstract][Full Text] [Related]
20. Transcriptome profiling of genes related to light-induced anthocyanin biosynthesis in eggplant (Solanum melongena L.) before purple color becomes evident. Li J; He YJ; Zhou L; Liu Y; Jiang M; Ren L; Chen H BMC Genomics; 2018 Mar; 19(1):201. PubMed ID: 29554865 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]