BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

372 related articles for article (PubMed ID: 28399904)

  • 1. Separation of photoreceptor cell compartments in mouse retina for protein analysis.
    Rose K; Walston ST; Chen J
    Mol Neurodegener; 2017 Apr; 12(1):28. PubMed ID: 28399904
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temporal kinetics of the light/dark translocation and compartmentation of arrestin and alpha-transducin in mouse photoreceptor cells.
    Elias RV; Sezate SS; Cao W; McGinnis JF
    Mol Vis; 2004 Sep; 10():672-81. PubMed ID: 15467522
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cytoskeleton participation in subcellular trafficking of signal transduction proteins in rod photoreceptor cells.
    McGinnis JF; Matsumoto B; Whelan JP; Cao W
    J Neurosci Res; 2002 Feb; 67(3):290-7. PubMed ID: 11813233
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The translocation of signaling molecules in dark adapting mammalian rod photoreceptor cells is dependent on the cytoskeleton.
    Reidel B; Goldmann T; Giessl A; Wolfrum U
    Cell Motil Cytoskeleton; 2008 Oct; 65(10):785-800. PubMed ID: 18623243
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Light-dependent redistribution of visual arrestins and transducin subunits in mice with defective phototransduction.
    Zhang H; Huang W; Zhang H; Zhu X; Craft CM; Baehr W; Chen CK
    Mol Vis; 2003 Jun; 9():231-7. PubMed ID: 12802257
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of an MRI biomarker sensitive to tetrameric visual arrestin 1 and its reduction via light-evoked translocation in vivo.
    Berkowitz BA; Gorgis J; Patel A; Baameur F; Gurevich VV; Craft CM; Kefalov VJ; Roberts R
    FASEB J; 2015 Feb; 29(2):554-64. PubMed ID: 25351983
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mouse cone arrestin expression pattern: light induced translocation in cone photoreceptors.
    Zhu X; Li A; Brown B; Weiss ER; Osawa S; Craft CM
    Mol Vis; 2002 Dec; 8():462-71. PubMed ID: 12486395
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two Peeling Methods for the Isolation of Photoreceptor Cell Compartments in the Mouse Retina for Protein Analysis.
    Rose K; Lokappa S; Chen J
    J Vis Exp; 2021 Dec; (178):. PubMed ID: 34958075
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Growth factor receptor-bound protein 14 undergoes light-dependent intracellular translocation in rod photoreceptors: functional role in retinal insulin receptor activation.
    Rajala A; Daly RJ; Tanito M; Allen DT; Holt LJ; Lobanova ES; Arshavsky VY; Rajala RV
    Biochemistry; 2009 Jun; 48(24):5563-72. PubMed ID: 19438210
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GC1 deletion prevents light-dependent arrestin translocation in mouse cone photoreceptor cells.
    Coleman JE; Semple-Rowland SL
    Invest Ophthalmol Vis Sci; 2005 Jan; 46(1):12-6. PubMed ID: 15623748
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Loss of retinoschisin (RS1) cell surface protein in maturing mouse rod photoreceptors elevates the luminance threshold for light-driven translocation of transducin but not arrestin.
    Ziccardi L; Vijayasarathy C; Bush RA; Sieving PA
    J Neurosci; 2012 Sep; 32(38):13010-21. PubMed ID: 22993419
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photoreceptor vitality in organotypic cultures of mature vertebrate retinas validated by light-dependent molecular movements.
    Reidel B; Orisme W; Goldmann T; Smith WC; Wolfrum U
    Vision Res; 2006 Dec; 46(27):4464-71. PubMed ID: 16979692
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Light-dependent compartmentalization of transducin in rod photoreceptors.
    Artemyev NO
    Mol Neurobiol; 2008 Feb; 37(1):44-51. PubMed ID: 18425604
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arrestin mRNA expression, biosynthesis, and localization in degenerating photoreceptors of mutant rds mice retinas.
    Nir I; Agarwal N
    J Comp Neurol; 1991 Jun; 308(1):1-10. PubMed ID: 1874976
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Speeding rod recovery improves temporal resolution in the retina.
    Fortenbach CR; Kessler C; Peinado Allina G; Burns ME
    Vision Res; 2015 May; 110(Pt A):57-67. PubMed ID: 25748270
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Light-induced changes in S-antigen (arrestin) localization in retinal photoreceptors: differences between rods and cones and defective process in RCS rat retinal dystrophy.
    Mirshahi M; Thillaye B; Tarraf M; de Kozak Y; Faure JP
    Eur J Cell Biol; 1994 Feb; 63(1):61-7. PubMed ID: 8005106
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RGS9, a GTPase accelerator for phototransduction.
    He W; Cowan CW; Wensel TG
    Neuron; 1998 Jan; 20(1):95-102. PubMed ID: 9459445
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosducin facilitates light-driven transducin translocation in rod photoreceptors. Evidence from the phosducin knockout mouse.
    Sokolov M; Strissel KJ; Leskov IB; Michaud NA; Govardovskii VI; Arshavsky VY
    J Biol Chem; 2004 Apr; 279(18):19149-56. PubMed ID: 14973130
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Light-dependent subcellular movement of photoreceptor proteins.
    Whelan JP; McGinnis JF
    J Neurosci Res; 1988; 20(2):263-70. PubMed ID: 3172281
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photoreceptor function of retinal transplants implicated by light-dark shift of S-antigen and rod transducin.
    Seiler MJ; Aramant RB; Ball SL
    Vision Res; 1999 Jul; 39(15):2589-96. PubMed ID: 10396627
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.