These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 28400156)

  • 61. Preparation, characterisation and applications of bone char, a food waste-derived sustainable material: A review.
    Piccirillo C
    J Environ Manage; 2023 Aug; 339():117896. PubMed ID: 37080100
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Pyrolysis and Gasification of a Real Refuse-Derived Fuel (RDF): The Potential Use of the Products under a Circular Economy Vision.
    Alfè M; Gargiulo V; Porto M; Migliaccio R; Le Pera A; Sellaro M; Pellegrino C; Abe AA; Urciuolo M; Caputo P; Calandra P; Loise V; Rossi CO; Ruoppolo G
    Molecules; 2022 Nov; 27(23):. PubMed ID: 36500207
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Effects of gaseous agents on the evolution of char physical and chemical structures during biomass gasification.
    Xu MX; Wu YC; Nan DH; Lu Q; Yang YP
    Bioresour Technol; 2019 Nov; 292():121994. PubMed ID: 31437799
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Sugarcane vinasse CO2 gasification and release of ash-forming matters in CO2 and N2 atmospheres.
    Dirbeba MJ; Brink A; DeMartini N; Lindberg D; Hupa M
    Bioresour Technol; 2016 Oct; 218():606-14. PubMed ID: 27403861
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Unconverted chars obtained during biomass gasification on a pilot-scale gasifier as a source of activated carbon production.
    García-García A; Gregório A; Franco C; Pinto F; Boavida D; Gulyurtlu I
    Bioresour Technol; 2003 May; 88(1):27-32. PubMed ID: 12573560
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Investigating the morphology and reactivity of chars from Triplochiton scleroxylon pyrolysed under varied conditions.
    Oluoti K; Pettersson A; Richards T
    Bioresour Technol; 2016 May; 208():94-99. PubMed ID: 26926201
    [TBL] [Abstract][Full Text] [Related]  

  • 67. The evaluation of immobilization behavior and potential ecological risk of heavy metals in bio-char with different alkaline activation.
    Zhao B; Xu X; Liu W; Zhang R; Cui M; Liu J; Zhang W
    Environ Sci Pollut Res Int; 2021 May; 28(17):21396-21410. PubMed ID: 33411270
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Recovery of Cr(III) by using chars from the co-gasification of agriculture and forestry wastes.
    Godinho D; Nogueira M; Bernardo M; Dias D; Lapa N; Fonseca I; Pinto F
    Environ Sci Pollut Res Int; 2019 Aug; 26(22):22723-22735. PubMed ID: 31168718
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Activated bio-chars derived from rice husk via one- and two-step KOH-catalyzed pyrolysis for phenol adsorption.
    Fu Y; Shen Y; Zhang Z; Ge X; Chen M
    Sci Total Environ; 2019 Jan; 646():1567-1577. PubMed ID: 30235641
    [TBL] [Abstract][Full Text] [Related]  

  • 70. [Configuration of pyrolytic chars from waste tires in fluidized bed reactor].
    Jin YQ; Yan JH; Gu JY; Cen KF
    Huan Jing Ke Xue; 2004 Nov; 25(6):159-62. PubMed ID: 15759903
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Effects of char from biomass gasification on carbon retention and nitrogen conversion in landfill simulation bioreactors.
    Peng W; Pivato A; Garbo F; Wang T
    Environ Sci Pollut Res Int; 2020 Feb; 27(6):6401-6410. PubMed ID: 31867693
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Development of coconut pith chars towards high elemental mercury adsorption performance - Effect of pyrolysis temperatures.
    Johari K; Saman N; Song ST; Cheu SC; Kong H; Mat H
    Chemosphere; 2016 Aug; 156():56-68. PubMed ID: 27160635
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Valorisation of spent tire rubber as carbon adsorbents for Pb(II) and W(VI) in the framework of a Circular Economy.
    Bernardo M; Lapa N; Pinto F; Nogueira M; Matos I; Ventura M; Ferraria AM; do Rego AMB; Fonseca IM
    Environ Sci Pollut Res Int; 2023 Jun; 30(30):74820-74837. PubMed ID: 37209332
    [TBL] [Abstract][Full Text] [Related]  

  • 74. CO
    Phounglamcheik A; Vila R; Kienzl N; Wang L; Hedayati A; Broström M; Ramser K; Engvall K; Skreiberg Ø; Robinson R; Umeki K
    ACS Omega; 2021 Dec; 6(49):34115-34128. PubMed ID: 34926959
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Co-pyrolysis of Chinese lignite and biomass in a vacuum reactor.
    Yang X; Yuan C; Xu J; Zhang W
    Bioresour Technol; 2014 Dec; 173():1-5. PubMed ID: 25277348
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Hydrogen production from biomass gasification using biochar as a catalyst/support.
    Yao D; Hu Q; Wang D; Yang H; Wu C; Wang X; Chen H
    Bioresour Technol; 2016 Sep; 216():159-64. PubMed ID: 27240230
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Synergistic combination of biomass torrefaction and co-gasification: Reactivity studies.
    Zhang Y; Geng P; Liu R
    Bioresour Technol; 2017 Dec; 245(Pt A):225-233. PubMed ID: 28892695
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Steam gasification of char derived from refuse-derived fuel pyrolysis: adsorption behaviour in phenol solutions.
    Sebe E; Nagy G; Kállay AA
    Environ Technol; 2023 Nov; ():1-12. PubMed ID: 37970831
    [TBL] [Abstract][Full Text] [Related]  

  • 79. A green route for pyrolysis poly-generation of typical high ash biomass, rice husk: Effects on simultaneous production of carbonic oxide-rich syngas, phenol-abundant bio-oil, high-adsorption porous carbon and amorphous silicon dioxide.
    Su Y; Liu L; Zhang S; Xu D; Du H; Cheng Y; Wang Z; Xiong Y
    Bioresour Technol; 2020 Jan; 295():122243. PubMed ID: 31622918
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A review on the demineralisation of pre- and post-pyrolysis biomass and tyre wastes.
    Iraola-Arregui I; Van Der Gryp P; Görgens JF
    Waste Manag; 2018 Sep; 79():667-688. PubMed ID: 30343799
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.