These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 28400156)

  • 81. Physical and chemical characterization of waste wood derived biochars.
    Yargicoglu EN; Sadasivam BY; Reddy KR; Spokas K
    Waste Manag; 2015 Feb; 36():256-68. PubMed ID: 25464942
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Characterization and alkaline pretreatment of rice husk varieties in Uganda for potential utilization as precursors in the production of activated carbon and other value-added products.
    Menya E; Olupot PW; Storz H; Lubwama M; Kiros Y
    Waste Manag; 2018 Nov; 81():104-116. PubMed ID: 30527026
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Characterization of char derived from various types of solid wastes from the standpoint of fuel recovery and pretreatment before landfilling.
    Hwang IH; Matsuto T; Tanaka N; Sasaki Y; Tanaami K
    Waste Manag; 2007; 27(9):1155-66. PubMed ID: 16920347
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Pyrolysis conditions and ozone oxidation effects on ammonia adsorption in biomass generated chars.
    Kastner JR; Miller J; Das KC
    J Hazard Mater; 2009 May; 164(2-3):1420-7. PubMed ID: 18977081
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Preparation of high adsorption capacity bio-chars from waste biomass.
    Liu WJ; Zeng FX; Jiang H; Zhang XS
    Bioresour Technol; 2011 Sep; 102(17):8247-52. PubMed ID: 21724386
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Characterisation of major component leaching and buffering capacity of RDF incineration and gasification bottom ash in relation to reuse or disposal scenarios.
    Rocca S; van Zomeren A; Costa G; Dijkstra JJ; Comans RN; Lombardi F
    Waste Manag; 2012 Apr; 32(4):759-68. PubMed ID: 22226920
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Promoting the circular economy: Valorization of a residue from industrial char to activated carbon with potential environmental applications as adsorbents.
    Pereira L; Castillo V; Calero M; González-Egido S; Martín-Lara MÁ; Solís RR
    J Environ Manage; 2024 Apr; 356():120753. PubMed ID: 38531130
    [TBL] [Abstract][Full Text] [Related]  

  • 88. One-step pyrolysis of lignin and polyvinyl chloride for synthesis of porous carbon and its application for toluene sorption.
    Zhang N; Shen Y
    Bioresour Technol; 2019 Jul; 284():325-332. PubMed ID: 30953860
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Characterization of chars produced in the co-pyrolysis of different wastes: decontamination study.
    Bernardo M; Gonçalves M; Lapa N; Barbosa R; Mendes B; Pinto F
    J Hazard Mater; 2012 Mar; 207-208():28-35. PubMed ID: 21899951
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Gasification reactivity of co-pyrolysis char from coal blended with corn stalks.
    Chen X; Liu L; Zhang L; Zhao Y; Qiu P
    Bioresour Technol; 2019 May; 279():243-251. PubMed ID: 30735934
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Redox properties of plant biomass-derived black carbon (biochar).
    Klüpfel L; Keiluweit M; Kleber M; Sander M
    Environ Sci Technol; 2014 May; 48(10):5601-11. PubMed ID: 24749810
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Volatilisation of alkali and alkaline earth metallic species during the pyrolysis of biomass: differences between sugar cane bagasse and cane trash.
    Keown DM; Favas G; Hayashi J; Li CZ
    Bioresour Technol; 2005 Sep; 96(14):1570-7. PubMed ID: 15978989
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Pyrolysis of agricultural biomass residues: Comparative study of corn cob, wheat straw, rice straw and rice husk.
    Biswas B; Pandey N; Bisht Y; Singh R; Kumar J; Bhaskar T
    Bioresour Technol; 2017 Aug; 237():57-63. PubMed ID: 28238637
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Effects of composing on sorption capacity of bagasse-based chars.
    Tsui L; Juang MA
    Waste Manag; 2010 Jun; 30(6):995-9. PubMed ID: 20206493
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Influence of Mineral Composition of Chars Derived by Hydrothermal Carbonization on Sorption Behavior of CO
    Wedler C; Lotz K; Arami-Niya A; Xiao G; Span R; Muhler M; May EF; Richter M
    ACS Omega; 2020 May; 5(19):10704-10714. PubMed ID: 32455189
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Optimizing hydrogen gas production from genetically modified rice straw by steam co-gasification.
    Zahra ACA; Okura H; Chaerusani V; Alahakoon AMYW; Rizkiana J; Kang DJ; Abudula A; Guan G
    Waste Manag; 2024 Jul; 184():132-141. PubMed ID: 38815287
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Characteristics of rice husk gasification in an entrained flow reactor.
    Zhao Y; Sun S; Tian H; Qian J; Su F; Ling F
    Bioresour Technol; 2009 Dec; 100(23):6040-4. PubMed ID: 19589673
    [TBL] [Abstract][Full Text] [Related]  

  • 98. High quality syngas production from microwave pyrolysis of rice husk with char-supported metallic catalysts.
    Zhang S; Dong Q; Zhang L; Xiong Y
    Bioresour Technol; 2015 Sep; 191():17-23. PubMed ID: 25974618
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Steam assisted slow pyrolysis of contaminated biomasses: Effect of plant parts and process temperature on heavy metals fate.
    Grottola CM; Giudicianni P; Pindozzi S; Stanzione F; Faugno S; Fagnano M; Fiorentino N; Ragucci R
    Waste Manag; 2019 Feb; 85():232-241. PubMed ID: 30803577
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Characterization and valorization of biomass char: a comparison with biomass ash.
    Trivedi NS; Mandavgane SA; Chaurasia A
    Environ Sci Pollut Res Int; 2018 Feb; 25(4):3458-3467. PubMed ID: 29152698
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.