BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 28400290)

  • 1. Downstream drug product processing of itraconazole nanosuspension: Factors influencing drug particle size and dissolution from nanosuspension-layered beads.
    Parmentier J; Tan EH; Low A; Möschwitzer JP
    Int J Pharm; 2017 May; 524(1-2):443-453. PubMed ID: 28400290
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Downstream drug product processing of itraconazole nanosuspension: Factors influencing tablet material properties and dissolution of compacted nanosuspension-layered sugar beads.
    Tan EH; Parmentier J; Low A; Möschwitzer JP
    Int J Pharm; 2017 Oct; 532(1):131-138. PubMed ID: 28859940
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Incorporation of itraconazole nano-co-crystals into multiparticulate oral dosage forms.
    Huang Z; Staufenbiel S; Bodmeier R
    Eur J Pharm Biopharm; 2022 Jul; 176():75-86. PubMed ID: 35598769
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bead layering as a process to stabilize nanosuspensions: influence of drug hydrophobicity on nanocrystal reagglomeration following in-vitro release from sugar beads.
    Kayaert P; Anné M; Van den Mooter G
    J Pharm Pharmacol; 2011 Nov; 63(11):1446-53. PubMed ID: 21988425
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formulation and drying of miconazole and itraconazole nanosuspensions.
    Cerdeira AM; Mazzotti M; Gander B
    Int J Pharm; 2013 Feb; 443(1-2):209-20. PubMed ID: 23291552
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved oral bioavailability of core-shell structured beads by redispersion of the shell-forming nanoparticles: preparation, characterization and in vivo studies.
    Yao Q; Tao X; Tian B; Tang Y; Shao Y; Kou L; Gou J; Li X; Yin T; Tang X
    Colloids Surf B Biointerfaces; 2014 Jan; 113():92-100. PubMed ID: 24060933
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast dissolution of poorly water soluble drugs from fluidized bed coated nanocomposites: Impact of carrier size.
    Azad M; Moreno J; Bilgili E; Davé R
    Int J Pharm; 2016 Nov; 513(1-2):319-331. PubMed ID: 27639622
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formulation and performance of Irbesartan nanocrystalline suspension and granulated or bead-layered dried powders - Part I.
    Meruva S; Thool P; Shah S; Karki S; Bowen W; Ghosh I; Kumar S
    Int J Pharm; 2019 Sep; 568():118189. PubMed ID: 30851385
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formulation of itraconazole nanococrystals and evaluation of their bioavailability in dogs.
    De Smet L; Saerens L; De Beer T; Carleer R; Adriaensens P; Van Bocxlaer J; Vervaet C; Remon JP
    Eur J Pharm Biopharm; 2014 May; 87(1):107-13. PubMed ID: 24388913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a novel ophthalmic ciclosporin A-loaded nanosuspension using top-down media milling methods.
    Kim JH; Jang SW; Han SD; Hwang HD; Choi HG
    Pharmazie; 2011 Jul; 66(7):491-5. PubMed ID: 21812323
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production and in vitro characterization of solid dosage form incorporating drug nanoparticles.
    Basa S; Muniyappan T; Karatgi P; Prabhu R; Pillai R
    Drug Dev Ind Pharm; 2008 Nov; 34(11):1209-18. PubMed ID: 18720147
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanonized itraconazole powders for extemporary oral suspensions: Role of formulation components studied by a mixture design.
    Foglio Bonda A; Rinaldi M; Segale L; Palugan L; Cerea M; Vecchio C; Pattarino F
    Eur J Pharm Sci; 2016 Feb; 83():175-83. PubMed ID: 26742430
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation of ritonavir nanosuspensions by microfluidization using polymeric stabilizers: I. A Design of Experiment approach.
    Karakucuk A; Celebi N; Teksin ZS
    Eur J Pharm Sci; 2016 Dec; 95():111-121. PubMed ID: 27181836
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and Evaluation of Eudragit RS-100 Based Itraconazole Nanosuspension for Ophthalmic Application.
    Pawar P; Duduskar A; Waydande S
    Curr Drug Res Rev; 2021; 13(1):36-48. PubMed ID: 32990554
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and characterization of loratadine nanosuspension prepared by ultrasonic-assisted precipitation.
    Alshweiat A; Katona G; Csóka I; Ambrus R
    Eur J Pharm Sci; 2018 Sep; 122():94-104. PubMed ID: 29908301
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Factors influencing the release kinetics of drug nanocrystal-loaded pellet formulations.
    Möschwitzer JP; Müller RH
    Drug Dev Ind Pharm; 2013 May; 39(5):762-9. PubMed ID: 22803784
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Intensified Vibratory Milling Process for Enhancing the Breakage Kinetics during the Preparation of Drug Nanosuspensions.
    Li M; Zhang L; Davé RN; Bilgili E
    AAPS PharmSciTech; 2016 Apr; 17(2):389-99. PubMed ID: 26182907
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of a riboflavin non-aqueous nanosuspension prepared by bead milling for cutaneous application.
    Sato T; Takeuchi H; Sakurai T; Tanaka K; Matsuki K; Higashi K; Moribe K; Yamamoto K
    Chem Pharm Bull (Tokyo); 2015; 63(2):88-94. PubMed ID: 25748779
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cefdinir nanosuspension for improved oral bioavailability by media milling technique: formulation, characterization and in vitro-in vivo evaluations.
    Sawant KK; Patel MH; Patel K
    Drug Dev Ind Pharm; 2016; 42(5):758-68. PubMed ID: 26548349
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased dissolution and oral absorption of itraconazole/Soluplus extrudate compared with itraconazole nanosuspension.
    Zhang K; Yu H; Luo Q; Yang S; Lin X; Zhang Y; Tian B; Tang X
    Eur J Pharm Biopharm; 2013 Nov; 85(3 Pt B):1285-92. PubMed ID: 23562534
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.