BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 28400329)

  • 1. Deletion of Type I glutamine synthetase deregulates nitrogen metabolism and increases ethanol production in Clostridium thermocellum.
    Rydzak T; Garcia D; Stevenson DM; Sladek M; Klingeman DM; Holwerda EK; Amador-Noguez D; Brown SD; Guss AM
    Metab Eng; 2017 May; 41():182-191. PubMed ID: 28400329
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elimination of formate production in Clostridium thermocellum.
    Rydzak T; Lynd LR; Guss AM
    J Ind Microbiol Biotechnol; 2015 Sep; 42(9):1263-72. PubMed ID: 26162629
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elimination of metabolic pathways to all traditional fermentation products increases ethanol yields in Clostridium thermocellum.
    Papanek B; Biswas R; Rydzak T; Guss AM
    Metab Eng; 2015 Nov; 32():49-54. PubMed ID: 26369438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increase in ethanol yield via elimination of lactate production in an ethanol-tolerant mutant of Clostridium thermocellum.
    Biswas R; Prabhu S; Lynd LR; Guss AM
    PLoS One; 2014; 9(2):e86389. PubMed ID: 24516531
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The ethanol pathway from Thermoanaerobacterium saccharolyticum improves ethanol production in Clostridium thermocellum.
    Hon S; Olson DG; Holwerda EK; Lanahan AA; Murphy SJL; Maloney MI; Zheng T; Papanek B; Guss AM; Lynd LR
    Metab Eng; 2017 Jul; 42():175-184. PubMed ID: 28663138
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elimination of hydrogenase active site assembly blocks H2 production and increases ethanol yield in Clostridium thermocellum.
    Biswas R; Zheng T; Olson DG; Lynd LR; Guss AM
    Biotechnol Biofuels; 2015; 8():20. PubMed ID: 25763101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elucidating central metabolic redox obstacles hindering ethanol production in Clostridium thermocellum.
    Thompson RA; Layton DS; Guss AM; Olson DG; Lynd LR; Trinh CT
    Metab Eng; 2015 Nov; 32():207-219. PubMed ID: 26497628
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The bifunctional alcohol and aldehyde dehydrogenase gene, adhE, is necessary for ethanol production in Clostridium thermocellum and Thermoanaerobacterium saccharolyticum.
    Lo J; Zheng T; Hon S; Olson DG; Lynd LR
    J Bacteriol; 2015 Apr; 197(8):1386-93. PubMed ID: 25666131
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitrogen and sulfur requirements for Clostridium thermocellum and Caldicellulosiruptor bescii on cellulosic substrates in minimal nutrient media.
    Kridelbaugh DM; Nelson J; Engle NL; Tschaplinski TJ; Graham DE
    Bioresour Technol; 2013 Feb; 130():125-35. PubMed ID: 23306120
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering electron metabolism to increase ethanol production in Clostridium thermocellum.
    Lo J; Olson DG; Murphy SJ; Tian L; Hon S; Lanahan A; Guss AM; Lynd LR
    Metab Eng; 2017 Jan; 39():71-79. PubMed ID: 27989806
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteomic analysis of Clostridium thermocellum core metabolism: relative protein expression profiles and growth phase-dependent changes in protein expression.
    Rydzak T; McQueen PD; Krokhin OV; Spicer V; Ezzati P; Dwivedi RC; Shamshurin D; Levin DB; Wilkins JA; Sparling R
    BMC Microbiol; 2012 Sep; 12():214. PubMed ID: 22994686
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic control of Clostridium thermocellum via inhibition of hydrogenase activity and the glucose transport rate.
    Li HF; Knutson BL; Nokes SE; Lynn BC; Flythe MD
    Appl Microbiol Biotechnol; 2012 Feb; 93(4):1777-84. PubMed ID: 22218768
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Consolidated bioprocessing of cellulose to isobutanol using Clostridium thermocellum.
    Lin PP; Mi L; Morioka AH; Yoshino KM; Konishi S; Xu SC; Papanek BA; Riley LA; Guss AM; Liao JC
    Metab Eng; 2015 Sep; 31():44-52. PubMed ID: 26170002
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cofactor Specificity of the Bifunctional Alcohol and Aldehyde Dehydrogenase (AdhE) in Wild-Type and Mutant Clostridium thermocellum and Thermoanaerobacterium saccharolyticum.
    Zheng T; Olson DG; Tian L; Bomble YJ; Himmel ME; Lo J; Hon S; Shaw AJ; van Dijken JP; Lynd LR
    J Bacteriol; 2015 Aug; 197(15):2610-9. PubMed ID: 26013492
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptomic analysis of Clostridium thermocellum ATCC 27405 cellulose fermentation.
    Raman B; McKeown CK; Rodriguez M; Brown SD; Mielenz JR
    BMC Microbiol; 2011 Jun; 11():134. PubMed ID: 21672225
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteomic analysis of Clostridium thermocellum ATCC 27405 reveals the upregulation of an alternative transhydrogenase-malate pathway and nitrogen assimilation in cells grown on cellulose.
    Burton E; Martin VJ
    Can J Microbiol; 2012 Dec; 58(12):1378-88. PubMed ID: 23210995
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Revisiting the Regulation of the Primary Scaffoldin Gene in Clostridium thermocellum.
    Ortiz de Ora L; Muñoz-Gutiérrez I; Bayer EA; Shoham Y; Lamed R; Borovok I
    Appl Environ Microbiol; 2017 Apr; 83(8):. PubMed ID: 28159788
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bacterial production and secretion of water-insoluble fuel compounds from cellulose without the supplementation of cellulases.
    Ichikawa S; Karita S
    FEMS Microbiol Lett; 2015 Dec; 362(24):fnv202. PubMed ID: 26490947
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High ethanol titers from cellulose by using metabolically engineered thermophilic, anaerobic microbes.
    Argyros DA; Tripathi SA; Barrett TF; Rogers SR; Feinberg LF; Olson DG; Foden JM; Miller BB; Lynd LR; Hogsett DA; Caiazza NC
    Appl Environ Microbiol; 2011 Dec; 77(23):8288-94. PubMed ID: 21965408
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of Clostridium thermocellum strains with disrupted fermentation end-product pathways.
    van der Veen D; Lo J; Brown SD; Johnson CM; Tschaplinski TJ; Martin M; Engle NL; van den Berg RA; Argyros AD; Caiazza NC; Guss AM; Lynd LR
    J Ind Microbiol Biotechnol; 2013 Jul; 40(7):725-34. PubMed ID: 23645383
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.