These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 28400329)
1. Deletion of Type I glutamine synthetase deregulates nitrogen metabolism and increases ethanol production in Clostridium thermocellum. Rydzak T; Garcia D; Stevenson DM; Sladek M; Klingeman DM; Holwerda EK; Amador-Noguez D; Brown SD; Guss AM Metab Eng; 2017 May; 41():182-191. PubMed ID: 28400329 [TBL] [Abstract][Full Text] [Related]
2. Elimination of formate production in Clostridium thermocellum. Rydzak T; Lynd LR; Guss AM J Ind Microbiol Biotechnol; 2015 Sep; 42(9):1263-72. PubMed ID: 26162629 [TBL] [Abstract][Full Text] [Related]
3. The Roles of Nicotinamide Adenine Dinucleotide Phosphate Reoxidation and Ammonium Assimilation in the Secretion of Amino Acids as Byproducts of Clostridium thermocellum. Yayo J; Rydzak T; Kuil T; Karlsson A; Harding DJ; Guss AM; van Maris AJA Appl Environ Microbiol; 2023 Jan; 89(1):e0175322. PubMed ID: 36625594 [TBL] [Abstract][Full Text] [Related]
4. Elimination of metabolic pathways to all traditional fermentation products increases ethanol yields in Clostridium thermocellum. Papanek B; Biswas R; Rydzak T; Guss AM Metab Eng; 2015 Nov; 32():49-54. PubMed ID: 26369438 [TBL] [Abstract][Full Text] [Related]
5. Increase in ethanol yield via elimination of lactate production in an ethanol-tolerant mutant of Clostridium thermocellum. Biswas R; Prabhu S; Lynd LR; Guss AM PLoS One; 2014; 9(2):e86389. PubMed ID: 24516531 [TBL] [Abstract][Full Text] [Related]
6. The ethanol pathway from Thermoanaerobacterium saccharolyticum improves ethanol production in Clostridium thermocellum. Hon S; Olson DG; Holwerda EK; Lanahan AA; Murphy SJL; Maloney MI; Zheng T; Papanek B; Guss AM; Lynd LR Metab Eng; 2017 Jul; 42():175-184. PubMed ID: 28663138 [TBL] [Abstract][Full Text] [Related]
7. Elimination of hydrogenase active site assembly blocks H2 production and increases ethanol yield in Clostridium thermocellum. Biswas R; Zheng T; Olson DG; Lynd LR; Guss AM Biotechnol Biofuels; 2015; 8():20. PubMed ID: 25763101 [TBL] [Abstract][Full Text] [Related]
8. Enhanced cellulosic ethanol production via consolidated bioprocessing by Clostridium thermocellum ATCC 31924☆. Singh N; Mathur AS; Gupta RP; Barrow CJ; Tuli D; Puri M Bioresour Technol; 2018 Feb; 250():860-867. PubMed ID: 30001594 [TBL] [Abstract][Full Text] [Related]
10. The bifunctional alcohol and aldehyde dehydrogenase gene, adhE, is necessary for ethanol production in Clostridium thermocellum and Thermoanaerobacterium saccharolyticum. Lo J; Zheng T; Hon S; Olson DG; Lynd LR J Bacteriol; 2015 Apr; 197(8):1386-93. PubMed ID: 25666131 [TBL] [Abstract][Full Text] [Related]
11. Nitrogen and sulfur requirements for Clostridium thermocellum and Caldicellulosiruptor bescii on cellulosic substrates in minimal nutrient media. Kridelbaugh DM; Nelson J; Engle NL; Tschaplinski TJ; Graham DE Bioresour Technol; 2013 Feb; 130():125-35. PubMed ID: 23306120 [TBL] [Abstract][Full Text] [Related]
12. Metabolic Fluxes of Nitrogen and Pyrophosphate in Chemostat Cultures of Clostridium thermocellum and Thermoanaerobacterium saccharolyticum. Holwerda EK; Zhou J; Hon S; Stevenson DM; Amador-Noguez D; Lynd LR; van Dijken JP Appl Environ Microbiol; 2020 Nov; 86(23):. PubMed ID: 32978139 [No Abstract] [Full Text] [Related]
13. Engineering electron metabolism to increase ethanol production in Clostridium thermocellum. Lo J; Olson DG; Murphy SJ; Tian L; Hon S; Lanahan A; Guss AM; Lynd LR Metab Eng; 2017 Jan; 39():71-79. PubMed ID: 27989806 [TBL] [Abstract][Full Text] [Related]
14. Proteomic analysis of Clostridium thermocellum core metabolism: relative protein expression profiles and growth phase-dependent changes in protein expression. Rydzak T; McQueen PD; Krokhin OV; Spicer V; Ezzati P; Dwivedi RC; Shamshurin D; Levin DB; Wilkins JA; Sparling R BMC Microbiol; 2012 Sep; 12():214. PubMed ID: 22994686 [TBL] [Abstract][Full Text] [Related]
15. Transcriptomic and proteomic changes from medium supplementation and strain evolution in high-yielding Clostridium thermocellum strains. Papanek B; O'Dell KB; Manga P; Giannone RJ; Klingeman DM; Hettich RL; Brown SD; Guss AM J Ind Microbiol Biotechnol; 2018 Nov; 45(11):1007-1015. PubMed ID: 30187243 [TBL] [Abstract][Full Text] [Related]
16. Metabolic control of Clostridium thermocellum via inhibition of hydrogenase activity and the glucose transport rate. Li HF; Knutson BL; Nokes SE; Lynn BC; Flythe MD Appl Microbiol Biotechnol; 2012 Feb; 93(4):1777-84. PubMed ID: 22218768 [TBL] [Abstract][Full Text] [Related]