BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 28400513)

  • 1. Determining the factors driving selective effects of new nonsynonymous mutations.
    Huber CD; Kim BY; Marsden CD; Lohmueller KE
    Proc Natl Acad Sci U S A; 2017 Apr; 114(17):4465-4470. PubMed ID: 28400513
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of new mutations on fitness: insights from models and data.
    Bataillon T; Bailey SF
    Ann N Y Acad Sci; 2014 Jul; 1320(1):76-92. PubMed ID: 24891070
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inferring Genome-Wide Correlations of Mutation Fitness Effects between Populations.
    Huang X; Fortier AL; Coffman AJ; Struck TJ; Irby MN; James JE; León-Burguete JE; Ragsdale AP; Gutenkunst RN
    Mol Biol Evol; 2021 Sep; 38(10):4588-4602. PubMed ID: 34043790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inference of the Distribution of Selection Coefficients for New Nonsynonymous Mutations Using Large Samples.
    Kim BY; Huber CD; Lohmueller KE
    Genetics; 2017 May; 206(1):345-361. PubMed ID: 28249985
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A method for inferring the rate of occurrence and fitness effects of advantageous mutations.
    Schneider A; Charlesworth B; Eyre-Walker A; Keightley PD
    Genetics; 2011 Dec; 189(4):1427-37. PubMed ID: 21954160
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparison of models to infer the distribution of fitness effects of new mutations.
    Kousathanas A; Keightley PD
    Genetics; 2013 Apr; 193(4):1197-208. PubMed ID: 23341416
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of the Full Distribution of Fitness Effects of New Amino Acid Mutations Across Great Apes.
    Castellano D; Macià MC; Tataru P; Bataillon T; Munch K
    Genetics; 2019 Nov; 213(3):953-966. PubMed ID: 31488516
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The evolutionarily stable distribution of fitness effects.
    Rice DP; Good BH; Desai MM
    Genetics; 2015 May; 200(1):321-9. PubMed ID: 25762525
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A null model for the distribution of fitness effects of mutations.
    Cotto O; Day T
    Proc Natl Acad Sci U S A; 2023 Jun; 120(23):e2218200120. PubMed ID: 37252948
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inference of Distribution of Fitness Effects and Proportion of Adaptive Substitutions from Polymorphism Data.
    Tataru P; Mollion M; Glémin S; Bataillon T
    Genetics; 2017 Nov; 207(3):1103-1119. PubMed ID: 28951530
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Between but Not Within-Species Variation in the Distribution of Fitness Effects.
    James J; Kastally C; Budde KB; González-Martínez SC; Milesi P; Pyhäjärvi T; Lascoux M;
    Mol Biol Evol; 2023 Nov; 40(11):. PubMed ID: 37832225
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Joint inference of the distribution of fitness effects of deleterious mutations and population demography based on nucleotide polymorphism frequencies.
    Keightley PD; Eyre-Walker A
    Genetics; 2007 Dec; 177(4):2251-61. PubMed ID: 18073430
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A general multivariate extension of Fisher's geometrical model and the distribution of mutation fitness effects across species.
    Martin G; Lenormand T
    Evolution; 2006 May; 60(5):893-907. PubMed ID: 16817531
    [TBL] [Abstract][Full Text] [Related]  

  • 14. From Drift to Draft: How Much Do Beneficial Mutations Actually Contribute to Predictions of Ohta's Slightly Deleterious Model of Molecular Evolution?
    Chen J; Glémin S; Lascoux M
    Genetics; 2020 Apr; 214(4):1005-1018. PubMed ID: 32015019
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inference of the distribution of fitness effects of mutations is affected by single nucleotide polymorphism filtering methods, sample size and population structure.
    Andersson BA; Zhao W; Haller BC; Brännström Å; Wang XR
    Mol Ecol Resour; 2023 Oct; 23(7):1589-1603. PubMed ID: 37340611
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The fitness effect of mutations across environments: Fisher's geometrical model with multiple optima.
    Martin G; Lenormand T
    Evolution; 2015 Jun; 69(6):1433-1447. PubMed ID: 25908434
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Triallelic Population Genomics for Inferring Correlated Fitness Effects of Same Site Nonsynonymous Mutations.
    Ragsdale AP; Coffman AJ; Hsieh P; Struck TJ; Gutenkunst RN
    Genetics; 2016 May; 203(1):513-23. PubMed ID: 27029732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A bayesian MCMC approach to assess the complete distribution of fitness effects of new mutations: uncovering the potential for adaptive walks in challenging environments.
    Bank C; Hietpas RT; Wong A; Bolon DN; Jensen JD
    Genetics; 2014 Mar; 196(3):841-52. PubMed ID: 24398421
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The impact of non-neutral synonymous mutations when inferring selection on non-synonymous mutations.
    Zurita AMI; Kyriazis CC; Lohmueller KE
    bioRxiv; 2024 Feb; ():. PubMed ID: 38370782
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sex differences in deleterious mutational effects in Drosophila melanogaster: combining quantitative and population genetic insights.
    Ruzicka F; Connallon T; Reuter M
    Genetics; 2021 Nov; 219(3):. PubMed ID: 34740242
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.