BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

395 related articles for article (PubMed ID: 28400529)

  • 1. Control of
    Rouquette-Loughlin CE; Zalucki YM; Dhulipala VL; Balthazar JT; Doyle RG; Nicholas RA; Begum AA; Raterman EL; Jerse AE; Shafer WM
    mBio; 2017 Apr; 8(2):. PubMed ID: 28400529
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gonococcal Clinical Strains Bearing a Common
    Ayala JC; Schmerer MW; Kersh EN; Unemo M; Shafer WM
    mBio; 2022 Apr; 13(2):e0027622. PubMed ID: 35258329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Could Dampening Expression of the Neisseria gonorrhoeae
    Chen S; Connolly KL; Rouquette-Loughlin C; D'Andrea A; Jerse AE; Shafer WM
    mBio; 2019 Aug; 10(4):. PubMed ID: 31409679
    [No Abstract]   [Full Text] [Related]  

  • 4. Dueling regulatory properties of a transcriptional activator (MtrA) and repressor (MtrR) that control efflux pump gene expression in Neisseria gonorrhoeae.
    Zalucki YM; Dhulipala V; Shafer WM
    mBio; 2012 Dec; 3(6):e00446-12. PubMed ID: 23221802
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptional regulation of a gonococcal gene encoding a virulence factor (L-lactate permease).
    Ayala JC; Shafer WM
    PLoS Pathog; 2019 Dec; 15(12):e1008233. PubMed ID: 31860664
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MtrR modulates rpoH expression and levels of antimicrobial resistance in Neisseria gonorrhoeae.
    Folster JP; Johnson PJ; Jackson L; Dhulipali V; Dyer DW; Shafer WM
    J Bacteriol; 2009 Jan; 191(1):287-97. PubMed ID: 18978065
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel mechanism of high-level, broad-spectrum antibiotic resistance caused by a single base pair change in Neisseria gonorrhoeae.
    Ohneck EA; Zalucki YM; Johnson PJ; Dhulipala V; Golparian D; Unemo M; Jerse AE; Shafer WM
    mBio; 2011; 2(5):. PubMed ID: 21933917
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential regulation of ponA and pilMNOPQ expression by the MtrR transcriptional regulatory protein in Neisseria gonorrhoeae.
    Folster JP; Dhulipala V; Nicholas RA; Shafer WM
    J Bacteriol; 2007 Jul; 189(13):4569-77. PubMed ID: 17483228
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of the MtrC-MtrD-MtrE efflux-pump system modulates the in vivo fitness of Neisseria gonorrhoeae.
    Warner DM; Folster JP; Shafer WM; Jerse AE
    J Infect Dis; 2007 Dec; 196(12):1804-12. PubMed ID: 18190261
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanistic Basis for Decreased Antimicrobial Susceptibility in a Clinical Isolate of Neisseria gonorrhoeae Possessing a Mosaic-Like
    Rouquette-Loughlin CE; Reimche JL; Balthazar JT; Dhulipala V; Gernert KM; Kersh EN; Pham CD; Pettus K; Abrams AJ; Trees DL; St Cyr S; Shafer WM
    mBio; 2018 Nov; 9(6):. PubMed ID: 30482834
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptional regulation of the
    Ayala JC; Balthazar JT; Shafer WM
    Microbiology (Reading); 2022 Aug; 168(8):. PubMed ID: 35916832
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MpeR regulates the mtr efflux locus in Neisseria gonorrhoeae and modulates antimicrobial resistance by an iron-responsive mechanism.
    Mercante AD; Jackson L; Johnson PJ; Stringer VA; Dyer DW; Shafer WM
    Antimicrob Agents Chemother; 2012 Mar; 56(3):1491-501. PubMed ID: 22214775
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clinically relevant mutations that cause derepression of the Neisseria gonorrhoeae MtrC-MtrD-MtrE Efflux pump system confer different levels of antimicrobial resistance and in vivo fitness.
    Warner DM; Shafer WM; Jerse AE
    Mol Microbiol; 2008 Oct; 70(2):462-78. PubMed ID: 18761689
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FarR regulates the farAB-encoded efflux pump of Neisseria gonorrhoeae via an MtrR regulatory mechanism.
    Lee EH; Rouquette-Loughlin C; Folster JP; Shafer WM
    J Bacteriol; 2003 Dec; 185(24):7145-52. PubMed ID: 14645274
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural, Biochemical, and
    Beggs GA; Zalucki YM; Brown NG; Rastegari S; Phillips RK; Palzkill T; Shafer WM; Kumaraswami M; Brennan RG
    J Bacteriol; 2019 Oct; 201(20):. PubMed ID: 31331979
    [No Abstract]   [Full Text] [Related]  

  • 16. Azithromycin Resistance through Interspecific Acquisition of an Epistasis-Dependent Efflux Pump Component and Transcriptional Regulator in Neisseria gonorrhoeae.
    Wadsworth CB; Arnold BJ; Sater MRA; Grad YH
    mBio; 2018 Aug; 9(4):. PubMed ID: 30087172
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactions between Loci Contributing to Antimicrobial Resistance and Virulence in Neisseria gonorrhoeae.
    Mortimer TD
    mBio; 2022 Jun; 13(3):e0041222. PubMed ID: 35420483
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Induction of the mtrCDE-encoded efflux pump system of Neisseria gonorrhoeae requires MtrA, an AraC-like protein.
    Rouquette C; Harmon JB; Shafer WM
    Mol Microbiol; 1999 Aug; 33(3):651-8. PubMed ID: 10417654
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of a cell envelope protein (MtrF) involved in hydrophobic antimicrobial resistance in Neisseria gonorrhoeae.
    Veal WL; Shafer WM
    J Antimicrob Chemother; 2003 Jan; 51(1):27-37. PubMed ID: 12493784
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Off-target gene regulation mediated by transcriptional repressors of antimicrobial efflux pump genes in Neisseria gonorrhoeae.
    Johnson PJ; Stringer VA; Shafer WM
    Antimicrob Agents Chemother; 2011 Jun; 55(6):2559-65. PubMed ID: 21422217
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.