BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

353 related articles for article (PubMed ID: 28400718)

  • 1. Rab GTPases: The Key Players in the Molecular Pathway of Parkinson's Disease.
    Shi MM; Shi CH; Xu YM
    Front Cell Neurosci; 2017; 11():81. PubMed ID: 28400718
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The emerging role of Rab GTPases in the pathogenesis of Parkinson's disease.
    Gao Y; Wilson GR; Stephenson SEM; Bozaoglu K; Farrer MJ; Lockhart PJ
    Mov Disord; 2018 Feb; 33(2):196-207. PubMed ID: 29315801
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Parkinson's: A Disease of Aberrant Vesicle Trafficking.
    Singh PK; Muqit MMK
    Annu Rev Cell Dev Biol; 2020 Oct; 36():237-264. PubMed ID: 32749865
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of Rab GTPases in the pathobiology of Parkinson' disease.
    Bonet-Ponce L; Cookson MR
    Curr Opin Cell Biol; 2019 Aug; 59():73-80. PubMed ID: 31054512
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impaired mitochondrial dynamics and function in the pathogenesis of Parkinson's disease.
    Büeler H
    Exp Neurol; 2009 Aug; 218(2):235-46. PubMed ID: 19303005
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dysregulated phosphorylation of Rab GTPases by LRRK2 induces neurodegeneration.
    Jeong GR; Jang EH; Bae JR; Jun S; Kang HC; Park CH; Shin JH; Yamamoto Y; Tanaka-Yamamoto K; Dawson VL; Dawson TM; Hur EM; Lee BD
    Mol Neurodegener; 2018 Feb; 13(1):8. PubMed ID: 29439717
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Role of Rab Proteins in Parkinson's Disease Synaptopathy.
    Bellucci A; Longhena F; Spillantini MG
    Biomedicines; 2022 Aug; 10(8):. PubMed ID: 36009486
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A pathogenic variant in RAB32 causes autosomal dominant Parkinson's disease and activates LRRK2 kinase.
    Gustavsson EK; Follett J; Trinh J; Barodia SK; Real R; Liu Z; Grant-Peters M; Fox JD; Appel-Cresswell S; Stoessl AJ; Rajput A; Rajput AH; Auer R; Tilney R; Sturm M; Haack TB; Lesage S; Tesson C; Brice A; Vilariño-Güell C; Ryten M; Goldberg MS; West AB; Hu MT; Morris HR; Sharma M; Gan-Or Z; Samanci B; Lis P; Tocino T; Amouri R; Sassi SB; Hentati F; ; Tonelli F; Alessi DR; Farrer MJ
    medRxiv; 2024 Jan; ():. PubMed ID: 38293014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Emerging Functions of LRRK2 and Rab GTPases in the Endolysosomal System.
    Kuwahara T; Iwatsubo T
    Front Neurosci; 2020; 14():227. PubMed ID: 32256311
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of Parkinson's disease-related pathogenic TMEM230 mutants.
    Nam D; Kim H; Choi DJ; Bae YH; Lee BD; Son I; Seol W
    Anim Cells Syst (Seoul); 2018; 22(2):140-147. PubMed ID: 30460091
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel gene (TMEM230) linked to Parkinson's disease.
    Olszewska DA; Fearon C; Lynch T
    J Clin Mov Disord; 2016; 3():17. PubMed ID: 27872751
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rabs, Membrane Dynamics, and Parkinson's Disease.
    Tang BL
    J Cell Physiol; 2017 Jul; 232(7):1626-1633. PubMed ID: 27925204
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The LRRK2-RAB axis in regulation of vesicle trafficking and α-synuclein propagation.
    Bae EJ; Lee SJ
    Biochim Biophys Acta Mol Basis Dis; 2020 Mar; 1866(3):165632. PubMed ID: 31812666
    [TBL] [Abstract][Full Text] [Related]  

  • 14. LRRK2 and Rab GTPases.
    Pfeffer SR
    Biochem Soc Trans; 2018 Dec; 46(6):1707-1712. PubMed ID: 30467121
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Parkinson's disease-linked protein TMEM230 is required for Rab8a-mediated secretory vesicle trafficking and retromer trafficking.
    Kim MJ; Deng HX; Wong YC; Siddique T; Krainc D
    Hum Mol Genet; 2017 Feb; 26(4):729-741. PubMed ID: 28115417
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dysfunction of RAB39B-Mediated Vesicular Trafficking in Lewy Body Diseases.
    Koss DJ; Campesan S; Giorgini F; Outeiro TF
    Mov Disord; 2021 Aug; 36(8):1744-1758. PubMed ID: 33939203
    [TBL] [Abstract][Full Text] [Related]  

  • 17. LRRK2 and α-Synuclein: Distinct or Synergistic Players in Parkinson's Disease?
    O'Hara DM; Pawar G; Kalia SK; Kalia LV
    Front Neurosci; 2020; 14():577. PubMed ID: 32625052
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Etiology and pathogenesis of Parkinson's disease: from mitochondrial dysfunctions to familial Parkinson's disease].
    Hattori N
    Rinsho Shinkeigaku; 2004; 44(4-5):241-62. PubMed ID: 15287506
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein misfolding and aggregation in Parkinson's disease.
    Tan JM; Wong ES; Lim KL
    Antioxid Redox Signal; 2009 Sep; 11(9):2119-34. PubMed ID: 19243238
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vesicular Dysfunction and the Pathogenesis of Parkinson's Disease: Clues From Genetic Studies.
    Ebanks K; Lewis PA; Bandopadhyay R
    Front Neurosci; 2019; 13():1381. PubMed ID: 31969802
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.