These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 28400858)

  • 1. Multi-product biorefineries from lignocelluloses: a pathway to revitalisation of the sugar industry?
    Farzad S; Mandegari MA; Guo M; Haigh KF; Shah N; Görgens JF
    Biotechnol Biofuels; 2017; 10():87. PubMed ID: 28400858
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative techno-economic assessment and LCA of selected integrated sugarcane-based biorefineries.
    Gnansounou E; Vaskan P; Pachón ER
    Bioresour Technol; 2015 Nov; 196():364-75. PubMed ID: 26255600
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Techno-economic assessment of integrating methanol or Fischer-Tropsch synthesis in a South African sugar mill.
    Petersen AM; Farzad S; Görgens JF
    Bioresour Technol; 2015 May; 183():141-52. PubMed ID: 25727762
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioelectricity versus bioethanol from sugarcane bagasse: is it worth being flexible?
    Furlan FF; Filho RT; Pinto FH; Costa CB; Cruz AJ; Giordano RL; Giordano RC
    Biotechnol Biofuels; 2013 Oct; 6(1):142. PubMed ID: 24088415
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Process design and economic analysis of a biorefinery co-producing itaconic acid and electricity from sugarcane bagasse and trash lignocelluloses.
    Nieder-Heitmann M; Haigh KF; Görgens JF
    Bioresour Technol; 2018 Aug; 262():159-168. PubMed ID: 29704763
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Life cycle and economic assessment of sugarcane bagasse valorization to lactic acid.
    Munagala M; Shastri Y; Nalawade K; Konde K; Patil S
    Waste Manag; 2021 May; 126():52-64. PubMed ID: 33743339
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Economic and environmental assessment of cellulosic ethanol production scenarios annexed to a typical sugar mill.
    Ali Mandegari M; Farzad S; Görgens JF
    Bioresour Technol; 2017 Jan; 224():314-326. PubMed ID: 27816352
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrated techno-economic and environmental analysis of butadiene production from biomass.
    Farzad S; Mandegari MA; Görgens JF
    Bioresour Technol; 2017 Sep; 239():37-48. PubMed ID: 28500887
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Techno-economic and environmental sustainability analysis of filament-winding versus pultrusion based glass-fiber composite technologies.
    Rasheed R; Anwar I; Tahir F; Rizwan A; Javed H; Sharif F
    Environ Sci Pollut Res Int; 2023 Mar; 30(13):36276-36293. PubMed ID: 36543990
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Techno-economic analysis and climate change impacts of sugarcane biorefineries considering different time horizons.
    Junqueira TL; Chagas MF; Gouveia VLR; Rezende MCAF; Watanabe MDB; Jesus CDF; Cavalett O; Milanez AY; Bonomi A
    Biotechnol Biofuels; 2017; 10():50. PubMed ID: 28293288
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Techno-economic analysis of chemically catalysed lignocellulose biorefineries at a typical sugar mill: Sorbitol or glucaric acid and electricity co-production.
    Kapanji KK; Haigh KF; Görgens JF
    Bioresour Technol; 2019 Oct; 289():121635. PubMed ID: 31254898
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biorefineries in circular bioeconomy: A comprehensive review.
    Ubando AT; Felix CB; Chen WH
    Bioresour Technol; 2020 Mar; 299():122585. PubMed ID: 31901305
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Butanol production in a first-generation Brazilian sugarcane biorefinery: technical aspects and economics of greenfield projects.
    Mariano AP; Dias MO; Junqueira TL; Cunha MP; Bonomi A; Filho RM
    Bioresour Technol; 2013 May; 135():316-23. PubMed ID: 23127845
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conversion of vine shoots into bioethanol and chemicals: Prospective LCA of biorefinery concept.
    Pachón ER; Mandade P; Gnansounou E
    Bioresour Technol; 2020 May; 303():122946. PubMed ID: 32058905
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biorefineries based on coffee cut-stems and sugarcane bagasse: furan-based compounds and alkanes as interesting products.
    Aristizábal M V; Gómez P Á; Cardona A CA
    Bioresour Technol; 2015 Nov; 196():480-9. PubMed ID: 26280100
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Techno-economic analysis for a sugarcane biorefinery: Colombian case.
    Moncada J; El-Halwagi MM; Cardona CA
    Bioresour Technol; 2013 May; 135():533-43. PubMed ID: 23021947
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Environmental impacts of producing bioethanol and biobased lactic acid from standalone and integrated biorefineries using a consequential and an attributional life cycle assessment approach.
    Parajuli R; Knudsen MT; Birkved M; Djomo SN; Corona A; Dalgaard T
    Sci Total Environ; 2017 Nov; 598():497-512. PubMed ID: 28448939
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sustainable valorization of sugar industry waste: Status, opportunities, and challenges.
    Meghana M; Shastri Y
    Bioresour Technol; 2020 May; 303():122929. PubMed ID: 32037190
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How does technology pathway choice influence economic viability and environmental impacts of lignocellulosic biorefineries?
    Rajendran K; Murthy GS
    Biotechnol Biofuels; 2017; 10():268. PubMed ID: 29163670
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biorefinery of spent coffee grounds waste: Viable pathway towards circular bioeconomy.
    Rajesh Banu J; Kavitha S; Yukesh Kannah R; Dinesh Kumar M; Preethi ; Atabani AE; Kumar G
    Bioresour Technol; 2020 Apr; 302():122821. PubMed ID: 32008862
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.