These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 28400996)

  • 1. Open-source Software for Demand Forecasting of Clinical Laboratory Test Volumes Using Time-series Analysis.
    Mohammed EA; Naugler C
    J Pathol Inform; 2017; 8():7. PubMed ID: 28400996
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time series prediction of under-five mortality rates for Nigeria: comparative analysis of artificial neural networks, Holt-Winters exponential smoothing and autoregressive integrated moving average models.
    Adeyinka DA; Muhajarine N
    BMC Med Res Methodol; 2020 Dec; 20(1):292. PubMed ID: 33267817
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Are EMS call volume predictions based on demand pattern analysis accurate?
    Brown LH; Lerner EB; Larmon B; LeGassick T; Taigman M
    Prehosp Emerg Care; 2007; 11(2):199-203. PubMed ID: 17454807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Forecasting daily patient volumes in the emergency department.
    Jones SS; Thomas A; Evans RS; Welch SJ; Haug PJ; Snow GL
    Acad Emerg Med; 2008 Feb; 15(2):159-70. PubMed ID: 18275446
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of multivariate and univariate time series approaches to modelling and forecasting emergency department demand in Western Australia.
    Aboagye-Sarfo P; Mai Q; Sanfilippo FM; Preen DB; Stewart LM; Fatovich DM
    J Biomed Inform; 2015 Oct; 57():62-73. PubMed ID: 26151668
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated time series forecasting for biosurveillance.
    Burkom HS; Murphy SP; Shmueli G
    Stat Med; 2007 Sep; 26(22):4202-18. PubMed ID: 17335120
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of time series models for predicting campylobacteriosis risk in New Zealand.
    Al-Sakkaf A; Jones G
    Zoonoses Public Health; 2014 May; 61(3):167-74. PubMed ID: 23551848
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spring onion seed demand forecasting using a hybrid Holt-Winters and support vector machine model.
    Zhu Y; Zhao Y; Zhang J; Geng N; Huang D
    PLoS One; 2019; 14(7):e0219889. PubMed ID: 31344050
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An empirical investigation of forecasting methods for ambulance calls - a case study.
    Al-Azzani MAK; Davari S; England TJ
    Health Syst (Basingstoke); 2021; 10(4):268-285. PubMed ID: 34745589
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Forecasting Daily Volume and Acuity of Patients in the Emergency Department.
    Calegari R; Fogliatto FS; Lucini FR; Neyeloff J; Kuchenbecker RS; Schaan BD
    Comput Math Methods Med; 2016; 2016():3863268. PubMed ID: 27725842
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Forecasting maldistribution of human resources for healthcare and patients in Japan: a utilization-based approach.
    Ishikawa T; Nakao Y; Fujiwara K; Suzuki T; Tsuji S; Ogasawara K
    BMC Health Serv Res; 2019 Sep; 19(1):653. PubMed ID: 31500619
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Performance of time-series methods in forecasting the demand for red blood cell transfusion.
    Pereira A
    Transfusion; 2004 May; 44(5):739-46. PubMed ID: 15104656
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative Analysis of Different Univariate Forecasting Methods in Modelling and Predicting the Romanian Unemployment Rate for the Period 2021-2022.
    Davidescu AA; Apostu SA; Paul A
    Entropy (Basel); 2021 Mar; 23(3):. PubMed ID: 33803384
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comprehensive modelling framework to forecast the demand for all hospital services.
    Ordu M; Demir E; Tofallis C
    Int J Health Plann Manage; 2019 Apr; 34(2):e1257-e1271. PubMed ID: 30901132
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of three prediction models in pesticide poisoning.
    Sun P; Zhang L; Han L; Zhang H; Shen H; Zhu B; Wang B
    Environ Sci Pollut Res Int; 2022 Apr; 29(20):30584-30593. PubMed ID: 35000167
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pollutant specific optimal deep learning and statistical model building for air quality forecasting.
    Middya AI; Roy S
    Environ Pollut; 2022 May; 301():118972. PubMed ID: 35183666
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Comparison of Univariate and Multivariate Forecasting Models Predicting Emergency Department Patient Arrivals during the COVID-19 Pandemic.
    Etu EE; Monplaisir L; Masoud S; Arslanturk S; Emakhu J; Tenebe I; Miller JB; Hagerman T; Jourdan D; Krupp S
    Healthcare (Basel); 2022 Jun; 10(6):. PubMed ID: 35742171
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time Series Forecasting of Univariate Agrometeorological Data: A Comparative Performance Evaluation via One-Step and Multi-Step Ahead Forecasting Strategies.
    Suradhaniwar S; Kar S; Durbha SS; Jagarlapudi A
    Sensors (Basel); 2021 Apr; 21(7):. PubMed ID: 33916026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Planning for subacute care: predicting demand using acute activity data.
    Green JP; McNamee JP; Kobel C; Seraji MHR; Lawrence SJ
    Aust Health Rev; 2016 Jan; 40(6):686-690. PubMed ID: 27050087
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Forecasting non-stationary diarrhea, acute respiratory infection, and malaria time-series in Niono, Mali.
    Medina DC; Findley SE; Guindo B; Doumbia S
    PLoS One; 2007 Nov; 2(11):e1181. PubMed ID: 18030322
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.