These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 28401593)

  • 1. Low-dose BMP-2 and MSC dual delivery onto coral scaffold for critical-size bone defect regeneration in sheep.
    Decambron A; Fournet A; Bensidhoum M; Manassero M; Sailhan F; Petite H; Logeart-Avramoglou D; Viateau V
    J Orthop Res; 2017 Dec; 35(12):2637-2645. PubMed ID: 28401593
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bone regeneration in sheep using acropora coral, a natural resorbable scaffold, and autologous mesenchymal stem cells.
    Manassero M; Viateau V; Deschepper M; Oudina K; Logeart-Avramoglou D; Petite H; Bensidhoum M
    Tissue Eng Part A; 2013 Jul; 19(13-14):1554-63. PubMed ID: 23427828
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long-bone critical-size defects treated with tissue-engineered grafts: a study on sheep.
    Viateau V; Guillemin G; Bousson V; Oudina K; Hannouche D; Sedel L; Logeart-Avramoglou D; Petite H
    J Orthop Res; 2007 Jun; 25(6):741-9. PubMed ID: 17318898
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparative study of tissue-engineered constructs from
    Decambron A; Manassero M; Bensidhoum M; Lecuelle B; Logeart-Avramoglou D; Petite H; Viateau V
    Bone Joint Res; 2017 Apr; 6(4):208-215. PubMed ID: 28408376
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Guided bone regeneration in pig calvarial bone defects using autologous mesenchymal stem/progenitor cells - a comparison of different tissue sources.
    Stockmann P; Park J; von Wilmowsky C; Nkenke E; Felszeghy E; Dehner JF; Schmitt C; Tudor C; Schlegel KA
    J Craniomaxillofac Surg; 2012 Jun; 40(4):310-20. PubMed ID: 21723141
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calcium-containing scaffolds induce bone regeneration by regulating mesenchymal stem cell differentiation and migration.
    Aquino-Martínez R; Angelo AP; Pujol FV
    Stem Cell Res Ther; 2017 Nov; 8(1):265. PubMed ID: 29145866
    [TBL] [Abstract][Full Text] [Related]  

  • 7. De novo reconstruction of functional bone by tissue engineering in the metatarsal sheep model.
    Bensaïd W; Oudina K; Viateau V; Potier E; Bousson V; Blanchat C; Sedel L; Guillemin G; Petite H
    Tissue Eng; 2005; 11(5-6):814-24. PubMed ID: 15998221
    [TBL] [Abstract][Full Text] [Related]  

  • 8. BMP delivery complements the guiding effect of scaffold architecture without altering bone microstructure in critical-sized long bone defects: A multiscale analysis.
    Cipitria A; Wagermaier W; Zaslansky P; Schell H; Reichert JC; Fratzl P; Hutmacher DW; Duda GN
    Acta Biomater; 2015 Sep; 23():282-294. PubMed ID: 26004222
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mesenchymal stem cells expressing baculovirus-engineered BMP-2 and VEGF enhance posterolateral spine fusion in a rabbit model.
    Fu TS; Chang YH; Wong CB; Wang IC; Tsai TT; Lai PL; Chen LH; Chen WJ
    Spine J; 2015 Sep; 15(9):2036-44. PubMed ID: 25463976
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Osteogenic Potential of Sheep Mesenchymal Stem Cells Preconditioned with BMP-2 and FGF-2 and Seeded on an nHAP-Coated PCL/HAP/β-TCP Scaffold.
    Stamnitz S; Krawczenko A; Szałaj U; Górecka Ż; Antończyk A; Kiełbowicz Z; Święszkowski W; Łojkowski W; Klimczak A
    Cells; 2022 Oct; 11(21):. PubMed ID: 36359842
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low-dose BMP-2 is sufficient to enhance the bone formation induced by an injectable, PLGA fiber-reinforced, brushite-forming cement in a sheep defect model of lumbar osteopenia.
    Gunnella F; Kunisch E; Bungartz M; Maenz S; Horbert V; Xin L; Mika J; Borowski J; Bischoff S; Schubert H; Hortschansky P; Sachse A; Illerhaus B; Günster J; Bossert J; Jandt KD; Plöger F; Kinne RW; Brinkmann O
    Spine J; 2017 Nov; 17(11):1699-1711. PubMed ID: 28619686
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioactive coatings on 3D printed scaffolds for bone regeneration: Use of Laponite® to deliver BMP-2 in an ovine femoral condyle defect model.
    Marshall KM; McLaren JS; Wojciechowski JP; Callens SJP; Echalier C; Kanczler JM; Rose FRAJ; Stevens MM; Dawson JI; Oreffo ROC
    Biomater Adv; 2024 Nov; 164():213959. PubMed ID: 39083876
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bone regeneration potential of allogeneic or autogeneic mesenchymal stem cells loaded onto cancellous bone granules in a rabbit radial defect model.
    Kang SH; Chung YG; Oh IH; Kim YS; Min KO; Chung JY
    Cell Tissue Res; 2014 Jan; 355(1):81-8. PubMed ID: 24169864
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancement of BMP-2 induced bone regeneration by SDF-1α mediated stem cell recruitment.
    Zwingenberger S; Yao Z; Jacobi A; Vater C; Valladares RD; Li C; Nich C; Rao AJ; Christman JE; Antonios JK; Gibon E; Schambach A; Maetzig T; Goodman SB; Stiehler M
    Tissue Eng Part A; 2014 Feb; 20(3-4):810-8. PubMed ID: 24090366
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Repair of rat calvarial defects using Si-doped hydroxyapatite scaffolds loaded with a bone morphogenetic protein-2-related peptide.
    Cui W; Sun G; Qu Y; Xiong Y; Sun T; Ji Y; Yang L; Shao Z; Ma J; Zhang S; Guo X
    J Orthop Res; 2016 Nov; 34(11):1874-1882. PubMed ID: 26909759
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deproteinized bovine bone functionalized with the slow delivery of BMP-2 for the repair of critical-sized bone defects in sheep.
    Liu T; Wu G; Wismeijer D; Gu Z; Liu Y
    Bone; 2013 Sep; 56(1):110-8. PubMed ID: 23732874
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Delivery of the improved BMP-2-Advanced plasmid DNA within a gene-activated scaffold accelerates mesenchymal stem cell osteogenesis and critical size defect repair.
    Raftery RM; Mencía-Castaño I; Sperger S; Chen G; Cavanagh B; Feichtinger GA; Redl H; Hacobian A; O'Brien FJ
    J Control Release; 2018 Aug; 283():20-31. PubMed ID: 29782946
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bone tissue engineering using polyetherketoneketone scaffolds combined with autologous mesenchymal stem cells in a sheep calvarial defect model.
    Adamzyk C; Kachel P; Hoss M; Gremse F; Modabber A; Hölzle F; Tolba R; Neuss S; Lethaus B
    J Craniomaxillofac Surg; 2016 Aug; 44(8):985-94. PubMed ID: 27328894
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combination of BMP-2-releasing gelatin/β-TCP sponges with autologous bone marrow for bone regeneration of X-ray-irradiated rabbit ulnar defects.
    Yamamoto M; Hokugo A; Takahashi Y; Nakano T; Hiraoka M; Tabata Y
    Biomaterials; 2015 Jul; 56():18-25. PubMed ID: 25934275
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 17β-estradiol improves the efficacy of exploited autologous bone marrow-derived mesenchymal stem cells in non-union radial defect healing: A rabbit model.
    Zamani Mazdeh D; Mirshokraei P; Emami M; Mirshahi A; Karimi I
    Res Vet Sci; 2018 Jun; 118():11-18. PubMed ID: 29334646
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.