BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 28401793)

  • 1. Developing a Customized Perfusion Bioreactor Prototype with Controlled Positional Variability in Oxygen Partial Pressure for Bone and Cartilage Tissue Engineering.
    Lee PS; Eckert H; Hess R; Gelinsky M; Rancourt D; Krawetz R; Cuniberti G; Scharnweber D
    Tissue Eng Part C Methods; 2017 May; 23(5):286-297. PubMed ID: 28401793
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of low oxygen tension on tissue-engineered cartilage construct development in the concentric cylinder bioreactor.
    Saini S; Wick TM
    Tissue Eng; 2004; 10(5-6):825-32. PubMed ID: 15265300
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tissue engineering of human cartilage and osteochondral composites using recirculation bioreactors.
    Mahmoudifar N; Doran PM
    Biomaterials; 2005 Dec; 26(34):7012-24. PubMed ID: 16039710
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recapitulating bone development events in a customised bioreactor through interplay of oxygen tension, medium pH, and systematic differentiation approaches.
    Lee PS; Hess R; Friedrichs J; Haenchen V; Eckert H; Cuniberti G; Rancourt D; Krawetz R; Hintze V; Gelinsky M; Scharnweber D
    J Tissue Eng Regen Med; 2019 Sep; 13(9):1672-1684. PubMed ID: 31250556
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Concentric cylinder bioreactor for production of tissue engineered cartilage: effect of seeding density and hydrodynamic loading on construct development.
    Saini S; Wick TM
    Biotechnol Prog; 2003; 19(2):510-21. PubMed ID: 12675595
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Uniform tissues engineered by seeding and culturing cells in 3D scaffolds under perfusion at defined oxygen tensions.
    Wendt D; Stroebel S; Jakob M; John GT; Martin I
    Biorheology; 2006; 43(3,4):481-8. PubMed ID: 16912419
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chondrogenesis of aged human articular cartilage in a scaffold-free bioreactor.
    Marlovits S; Tichy B; Truppe M; Gruber D; Vécsei V
    Tissue Eng; 2003 Dec; 9(6):1215-26. PubMed ID: 14670109
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxygen tension differentially regulates the functional properties of cartilaginous tissues engineered from infrapatellar fat pad derived MSCs and articular chondrocytes.
    Buckley CT; Vinardell T; Kelly DJ
    Osteoarthritis Cartilage; 2010 Oct; 18(10):1345-54. PubMed ID: 20650328
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of Modular, Dual-Perfused Osteochondral Constructs for Cartilage Repair.
    Daley ELH; Kuttig J; Stegemann JP
    Tissue Eng Part C Methods; 2019 Mar; 25(3):127-136. PubMed ID: 30724134
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Research progress of bioreactor biophysical factors in cartilage tissue engineering].
    Ye G; Zhang F; Shi H
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2013 Jul; 27(7):810-3. PubMed ID: 24063168
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new bioreactor for the controlled application of complex mechanical stimuli for cartilage tissue engineering.
    Laganà K; Moretti M; Dubini G; Raimondi MT
    Proc Inst Mech Eng H; 2008 Jul; 222(5):705-15. PubMed ID: 18756689
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of oxygen tension on adult articular chondrocytes in microcarrier bioreactor culture.
    Malda J; van den Brink P; Meeuwse P; Grojec M; Martens DE; Tramper J; Riesle J; van Blitterswijk CA
    Tissue Eng; 2004; 10(7-8):987-94. PubMed ID: 15363156
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of reduced oxygen tension and long-term mechanical stimulation on chondrocyte-polymer constructs.
    Wernike E; Li Z; Alini M; Grad S
    Cell Tissue Res; 2008 Feb; 331(2):473-83. PubMed ID: 17957384
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cartilage tissue engineering: controversy in the effect of oxygen.
    Malda J; Martens DE; Tramper J; van Blitterswijk CA; Riesle J
    Crit Rev Biotechnol; 2003; 23(3):175-94. PubMed ID: 14743989
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generating Mechanically Stable, Pediatric, and Scaffold-Free Nasal Cartilage Constructs In Vitro.
    Akbari P; Waldman SD; Propst EJ; Cushing SL; Weber JF; Yeger H; Farhat WA
    Tissue Eng Part C Methods; 2016 Dec; 22(12):1077-1084. PubMed ID: 27829311
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wavy-walled bioreactor supports increased cell proliferation and matrix deposition in engineered cartilage constructs.
    Bueno EM; Bilgen B; Barabino GA
    Tissue Eng; 2005; 11(11-12):1699-709. PubMed ID: 16411815
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioreactor cultivation conditions modulate the composition and mechanical properties of tissue-engineered cartilage.
    Vunjak-Novakovic G; Martin I; Obradovic B; Treppo S; Grodzinsky AJ; Langer R; Freed LE
    J Orthop Res; 1999 Jan; 17(1):130-8. PubMed ID: 10073657
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The importance of bicarbonate and nonbicarbonate buffer systems in batch and continuous flow bioreactors for articular cartilage tissue engineering.
    Khan AA; Surrao DC
    Tissue Eng Part C Methods; 2012 May; 18(5):358-68. PubMed ID: 22092352
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tissue engineering of osteochondral constructs in vitro using bioreactors.
    Haasper C; Zeichen J; Meister R; Krettek C; Jagodzinski M
    Injury; 2008 Apr; 39 Suppl 1():S66-76. PubMed ID: 18313474
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of a mechanical stimulation bioreactor on tissue engineered, scaffold-free cartilage.
    Tran SC; Cooley AJ; Elder SH
    Biotechnol Bioeng; 2011 Jun; 108(6):1421-9. PubMed ID: 21274847
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.