BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 28401919)

  • 1. Mutations in PMR1 stimulate xylose isomerase activity and anaerobic growth on xylose of engineered Saccharomyces cerevisiae by influencing manganese homeostasis.
    Verhoeven MD; Lee M; Kamoen L; van den Broek M; Janssen DB; Daran JG; van Maris AJ; Pronk JT
    Sci Rep; 2017 Apr; 7():46155. PubMed ID: 28401919
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation.
    Kuyper M; Hartog MM; Toirkens MJ; Almering MJ; Winkler AA; van Dijken JP; Pronk JT
    FEMS Yeast Res; 2005 Feb; 5(4-5):399-409. PubMed ID: 15691745
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bacterial xylose isomerases from the mammal gut Bacteroidetes cluster function in Saccharomyces cerevisiae for effective xylose fermentation.
    Peng B; Huang S; Liu T; Geng A
    Microb Cell Fact; 2015 May; 14():70. PubMed ID: 25981595
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reassessment of requirements for anaerobic xylose fermentation by engineered, non-evolved Saccharomyces cerevisiae strains.
    Bracher JM; Martinez-Rodriguez OA; Dekker WJC; Verhoeven MD; van Maris AJA; Pronk JT
    FEMS Yeast Res; 2019 Jan; 19(1):. PubMed ID: 30252062
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutation of a regulator Ask10p improves xylose isomerase activity through up-regulation of molecular chaperones in Saccharomyces cerevisiae.
    Hou J; Jiao C; Peng B; Shen Y; Bao X
    Metab Eng; 2016 Nov; 38():241-250. PubMed ID: 27497973
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Minimal metabolic engineering of Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: a proof of principle.
    Kuyper M; Winkler AA; van Dijken JP; Pronk JT
    FEMS Yeast Res; 2004 Mar; 4(6):655-64. PubMed ID: 15040955
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional expression of a bacterial xylose isomerase in Saccharomyces cerevisiae.
    Brat D; Boles E; Wiedemann B
    Appl Environ Microbiol; 2009 Apr; 75(8):2304-11. PubMed ID: 19218403
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of limiting metabolic steps in the utilization of xylose by recombinant Saccharomyces cerevisiae using metabolic engineering.
    Karhumaa K; Hahn-Hägerdal B; Gorwa-Grauslund MF
    Yeast; 2005 Apr; 22(5):359-68. PubMed ID: 15806613
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-level functional expression of a fungal xylose isomerase: the key to efficient ethanolic fermentation of xylose by Saccharomyces cerevisiae?
    Kuyper M; Harhangi HR; Stave AK; Winkler AA; Jetten MS; de Laat WT; den Ridder JJ; Op den Camp HJ; van Dijken JP; Pronk JT
    FEMS Yeast Res; 2003 Oct; 4(1):69-78. PubMed ID: 14554198
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Directed evolution of xylose isomerase for improved xylose catabolism and fermentation in the yeast Saccharomyces cerevisiae.
    Lee SM; Jellison T; Alper HS
    Appl Environ Microbiol; 2012 Aug; 78(16):5708-16. PubMed ID: 22685138
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal Structure and Biochemical Characterization of Xylose Isomerase from
    Son H; Lee SM; Kim KJ
    J Microbiol Biotechnol; 2018 Apr; 28(4):571-578. PubMed ID: 29385668
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of efficient xylose fermentation in Saccharomyces cerevisiae: xylose isomerase as a key component.
    van Maris AJ; Winkler AA; Kuyper M; de Laat WT; van Dijken JP; Pronk JT
    Adv Biochem Eng Biotechnol; 2007; 108():179-204. PubMed ID: 17846724
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineered Saccharomyces cerevisiae strain for improved xylose utilization with a three-plasmid SUMO yeast expression system.
    Hughes SR; Sterner DE; Bischoff KM; Hector RE; Dowd PF; Qureshi N; Bang SS; Grynaviski N; Chakrabarty T; Johnson ET; Dien BS; Mertens JA; Caughey RJ; Liu S; Butt TR; LaBaer J; Cotta MA; Rich JO
    Plasmid; 2009 Jan; 61(1):22-38. PubMed ID: 18831987
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic modelling reveals current limitations in the production of ethanol from xylose by recombinant Saccharomyces cerevisiae.
    Parachin NS; Bergdahl B; van Niel EW; Gorwa-Grauslund MF
    Metab Eng; 2011 Sep; 13(5):508-17. PubMed ID: 21642010
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of the Saccharomyces cerevisiae CCC1 gene in the homeostasis of manganese ions.
    Lapinskas PJ; Lin SJ; Culotta VC
    Mol Microbiol; 1996 Aug; 21(3):519-28. PubMed ID: 8866476
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional expression of xylose isomerase in flocculating industrial Saccharomyces cerevisiae strain for bioethanol production.
    Li YC; Li GY; Gou M; Xia ZY; Tang YQ; Kida K
    J Biosci Bioeng; 2016 Jun; 121(6):685-691. PubMed ID: 26645659
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Xylose metabolism in the anaerobic fungus Piromyces sp. strain E2 follows the bacterial pathway.
    Harhangi HR; Akhmanova AS; Emmens R; van der Drift C; de Laat WT; van Dijken JP; Jetten MS; Pronk JT; Op den Camp HJ
    Arch Microbiol; 2003 Aug; 180(2):134-41. PubMed ID: 12811467
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae.
    Zhou H; Cheng JS; Wang BL; Fink GR; Stephanopoulos G
    Metab Eng; 2012 Nov; 14(6):611-22. PubMed ID: 22921355
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization and evolution of xylose isomerase screened from the bovine rumen metagenome in Saccharomyces cerevisiae.
    Hou J; Shen Y; Jiao C; Ge R; Zhang X; Bao X
    J Biosci Bioeng; 2016 Feb; 121(2):160-5. PubMed ID: 26160406
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional expression in yeast of the human secretory pathway Ca(2+), Mn(2+)-ATPase defective in Hailey-Hailey disease.
    Ton VK; Mandal D; Vahadji C; Rao R
    J Biol Chem; 2002 Feb; 277(8):6422-7. PubMed ID: 11741891
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.