BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 28402066)

  • 1. Redox-Neutral Dual Functionalization of Electron-Deficient Alkenes.
    Pettersson F; Bergonzini G; Cassani C; Wallentin CJ
    Chemistry; 2017 Jun; 23(31):7444-7447. PubMed ID: 28402066
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Merging Visible Light Photoredox and Gold Catalysis.
    Hopkinson MN; Tlahuext-Aca A; Glorius F
    Acc Chem Res; 2016 Oct; 49(10):2261-2272. PubMed ID: 27610939
    [TBL] [Abstract][Full Text] [Related]  

  • 3. When Light Meets Nitrogen-Centered Radicals: From Reagents to Catalysts.
    Yu XY; Zhao QQ; Chen J; Xiao WJ; Chen JR
    Acc Chem Res; 2020 May; 53(5):1066-1083. PubMed ID: 32286794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visible-Light Photoredox-Catalyzed Giese Reaction: Decarboxylative Addition of Amino Acid Derived α-Amino Radicals to Electron-Deficient Olefins.
    Millet A; Lefebvre Q; Rueping M
    Chemistry; 2016 Sep; 22(38):13464-8. PubMed ID: 27321136
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photoredox-Catalyzed Hydroacylation of Olefins Employing Carboxylic Acids and Hydrosilanes.
    Zhang M; Ruzi R; Xi J; Li N; Wu Z; Li W; Yu S; Zhu C
    Org Lett; 2017 Jul; 19(13):3430-3433. PubMed ID: 28612606
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intermolecular Reactions of Pyridyl Radicals with Olefins via Photoredox Catalysis.
    Seath CP; Jui NT
    Synlett; 2019 Sep; 30(14):1607-1614. PubMed ID: 31938012
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Prowess of Photogenerated Amine Radical Cations in Cascade Reactions: From Carbocycles to Heterocycles.
    Morris SA; Wang J; Zheng N
    Acc Chem Res; 2016 Sep; 49(9):1957-68. PubMed ID: 27536956
    [TBL] [Abstract][Full Text] [Related]  

  • 8. α-Amino Acids and Peptides as Bifunctional Reagents: Carbocarboxylation of Activated Alkenes via Recycling CO
    Liao LL; Cao GM; Jiang YX; Jin XH; Hu XL; Chruma JJ; Sun GQ; Gui YY; Yu DG
    J Am Chem Soc; 2021 Feb; 143(7):2812-2821. PubMed ID: 33561344
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of Functionalized Cyclopropanes from Carboxylic Acids by a Radical Addition-Polar Cyclization Cascade.
    Shu C; Mega RS; Andreassen BJ; Noble A; Aggarwal VK
    Angew Chem Int Ed Engl; 2018 Nov; 57(47):15430-15434. PubMed ID: 30204292
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploration of Visible-Light Photocatalysis in Heterocycle Synthesis and Functionalization: Reaction Design and Beyond.
    Chen JR; Hu XQ; Lu LQ; Xiao WJ
    Acc Chem Res; 2016 Sep; 49(9):1911-23. PubMed ID: 27551740
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective 1,2-Aryl-Aminoalkylation of Alkenes Enabled by Metallaphotoredox Catalysis.
    Zheng S; Chen Z; Hu Y; Xi X; Liao Z; Li W; Yuan W
    Angew Chem Int Ed Engl; 2020 Oct; 59(41):17910-17916. PubMed ID: 32633062
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Asymmetric Photocatalysis with Bis-cyclometalated Rhodium Complexes.
    Huang X; Meggers E
    Acc Chem Res; 2019 Mar; 52(3):833-847. PubMed ID: 30840435
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Asymmetric 1,4-functionalization of 1,3-enynes via dual photoredox and chromium catalysis.
    Zhang FH; Guo X; Zeng X; Wang Z
    Nat Commun; 2022 Aug; 13(1):5036. PubMed ID: 36028488
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Asymmetric three-component olefin dicarbofunctionalization enabled by photoredox and copper dual catalysis.
    Wang PZ; Gao Y; Chen J; Huan XD; Xiao WJ; Chen JR
    Nat Commun; 2021 Mar; 12(1):1815. PubMed ID: 33753736
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct allylic acylation via cross-coupling involving cooperative N‑heterocyclic carbene, hydrogen atom transfer, and photoredox catalysis.
    Wang X; Yang R; Zhu B; Liu Y; Song H; Dong J; Wang Q
    Nat Commun; 2023 May; 14(1):2951. PubMed ID: 37221185
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photoredox-Catalyzed Addition of Carbamoyl Radicals to Olefins: A 1,4-Dihydropyridine Approach.
    Cardinale L; Konev MO; Jacobi von Wangelin A
    Chemistry; 2020 Jul; 26(37):8239-8243. PubMed ID: 32428293
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxygen switch in visible-light photoredox catalysis: radical additions and cyclizations and unexpected C-C-bond cleavage reactions.
    Zhu S; Das A; Bui L; Zhou H; Curran DP; Rueping M
    J Am Chem Soc; 2013 Feb; 135(5):1823-9. PubMed ID: 23330701
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthetic Utilization of α-Aminoalkyl Radicals and Related Species in Visible Light Photoredox Catalysis.
    Nakajima K; Miyake Y; Nishibayashi Y
    Acc Chem Res; 2016 Sep; 49(9):1946-56. PubMed ID: 27505299
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photoredox Functionalization of 3-Halogenchromones, 3-Formylchromones, and Chromone-3-carboxylic Acids: Routes to 3-Acylchromones.
    Mkrtchyan S; Iaroshenko VO
    J Org Chem; 2020 Jun; 85(11):7152-7174. PubMed ID: 32393030
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visible-Light-Induced Decarboxylative Functionalization of Carboxylic Acids and Their Derivatives.
    Xuan J; Zhang ZG; Xiao WJ
    Angew Chem Int Ed Engl; 2015 Dec; 54(52):15632-41. PubMed ID: 26509837
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.