These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 28402086)

  • 1. The effect of increased microporosity on bone formation within silicate-substituted scaffolds in an ovine posterolateral spinal fusion model.
    Coathup MJ; Blunn GW; Campion C; Ho CY; Hing KA
    J Biomed Mater Res B Appl Biomater; 2017 May; 105(4):805-814. PubMed ID: 28402086
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of microporosity on osteoinduction of calcium phosphate bone graft substitute biomaterials.
    Chan O; Coathup MJ; Nesbitt A; Ho CY; Hing KA; Buckland T; Campion C; Blunn GW
    Acta Biomater; 2012 Jul; 8(7):2788-94. PubMed ID: 22475784
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increasing strut porosity in silicate-substituted calcium-phosphate bone graft substitutes enhances osteogenesis.
    Campion CR; Chander C; Buckland T; Hing K
    J Biomed Mater Res B Appl Biomater; 2011 May; 97(2):245-54. PubMed ID: 21384544
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of increased strut porosity of calcium phosphate bone graft substitute biomaterials on osteoinduction.
    Coathup MJ; Hing KA; Samizadeh S; Chan O; Fang YS; Campion C; Buckland T; Blunn GW
    J Biomed Mater Res A; 2012 Jun; 100(6):1550-5. PubMed ID: 22419568
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of an increased strut porosity silicate-substituted calcium phosphate, SiCaP EP, as a synthetic bone graft substitute in spinal fusion surgery: a prospective, open-label study.
    Bolger C; Jones D; Czop S
    Eur Spine J; 2019 Jul; 28(7):1733-1742. PubMed ID: 30834972
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A carboxymethyl cellulose bone graft carrier delays early bone healing in an ovine model.
    Coathup M; Campion C; Blunn G
    J Biomed Mater Res B Appl Biomater; 2020 Apr; 108(3):612-618. PubMed ID: 31112008
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficacy of silicate-substituted calcium phosphate with enhanced strut porosity as a standalone bone graft substitute and autograft extender in an ovine distal femoral critical defect model.
    Hutchens SA; Campion C; Assad M; Chagnon M; Hing KA
    J Mater Sci Mater Med; 2016 Jan; 27(1):20. PubMed ID: 26684617
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of particle size on the osteointegration of injectable silicate-substituted calcium phosphate bone substitute materials.
    Coathup MJ; Cai Q; Campion C; Buckland T; Blunn GW
    J Biomed Mater Res B Appl Biomater; 2013 Aug; 101(6):902-10. PubMed ID: 23362131
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of SiCaP-30 in a Rabbit Posterolateral Fusion Model with Concurrent Chemotherapy.
    Smucker JD; Petersen EB; Al-Hili A; Nepola JV; Fredericks DC
    Iowa Orthop J; 2015; 35():140-6. PubMed ID: 26361457
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of an alginate carrier on bone formation in a hydroxyapatite scaffold.
    Coathup MJ; Edwards TC; Samizadeh S; Lo WJ; Blunn GW
    J Biomed Mater Res B Appl Biomater; 2016 Oct; 104(7):1328-35. PubMed ID: 26118665
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The osteoinductivity of silicate-substituted calcium phosphate.
    Coathup MJ; Samizadeh S; Fang YS; Buckland T; Hing KA; Blunn GW
    J Bone Joint Surg Am; 2011 Dec; 93(23):2219-26. PubMed ID: 22159858
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Radiographic and clinical outcomes of silicate-substituted calcium phosphate (SiCaP) bone grafts in spinal fusion: Systematic review and meta-analysis.
    Cottrill E; Premananthan C; Pennington Z; Ehresman J; Theodore N; Sciubba DM; Witham T
    J Clin Neurosci; 2020 Nov; 81():353-366. PubMed ID: 33222944
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A prospective, randomized, controlled trial comparing radiographic and clinical outcomes between stand-alone lateral interbody lumbar fusion with either silicate calcium phosphate or rh-BMP2.
    Pimenta L; Marchi L; Oliveira L; Coutinho E; Amaral R
    J Neurol Surg A Cent Eur Neurosurg; 2013 Nov; 74(6):343-50. PubMed ID: 23444134
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lumbar interbody fusion rates with 3D-printed lamellar titanium cages using a silicate-substituted calcium phosphate bone graft.
    Mokawem M; Katzouraki G; Harman CL; Lee R
    J Clin Neurosci; 2019 Oct; 68():134-139. PubMed ID: 31351704
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D perfusion bioreactor-activated porous granules on implant fixation and early bone formation in sheep.
    Ding M; Henriksen SS; Martinetti R; Overgaard S
    J Biomed Mater Res B Appl Biomater; 2017 Nov; 105(8):2465-2476. PubMed ID: 27655015
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficacy of a synthetic calcium phosphate with submicron surface topography as autograft extender in lapine posterolateral spinal fusion.
    van Dijk LA; Barbieri D; Barrère-de Groot F; Yuan H; Oliver R; Christou C; Walsh WR; de Bruijn JD
    J Biomed Mater Res B Appl Biomater; 2019 Aug; 107(6):2080-2090. PubMed ID: 30614621
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of Two Synthetic Bone Graft Products in a Rabbit Posterolateral Fusion Model.
    Fredericks D; Petersen EB; Watson N; Grosland N; Gibson-Corley K; Smucker J
    Iowa Orthop J; 2016; 36():167-73. PubMed ID: 27528855
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of silicon-doped calcium phosphate bone grafting materials on bone regeneration and osteogenic marker expression after implantation in the ovine scapula.
    Knabe C; Adel-Khattab D; Hübner WD; Peters F; Knauf T; Peleska B; Barnewitz D; Genzel A; Kusserow R; Sterzik F; Stiller M; Müller-Mai C
    J Biomed Mater Res B Appl Biomater; 2019 Apr; 107(3):594-614. PubMed ID: 29770578
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of posterolateral lumbar fusion in sheep using mineral scaffolds seeded with cultured bone marrow cells.
    Cuenca-López MD; Andrades JA; Gómez S; Zamora-Navas P; Guerado E; Rubio N; Blanco J; Becerra J
    Int J Mol Sci; 2014 Dec; 15(12):23359-76. PubMed ID: 25522168
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PLGA/β-TCP composite scaffold incorporating salvianolic acid B promotes bone fusion by angiogenesis and osteogenesis in a rat spinal fusion model.
    Lin S; Cui L; Chen G; Huang J; Yang Y; Zou K; Lai Y; Wang X; Zou L; Wu T; Cheng JCY; Li G; Wei B; Lee WYW
    Biomaterials; 2019 Mar; 196():109-121. PubMed ID: 29655516
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.