BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 28402104)

  • 1. Hydrogen/Deuterium Exchange Mass Spectrometry of Human Green Opsin Reveals a Conserved Pro-Pro Motif in Extracellular Loop 2 of Monostable Visual G Protein-Coupled Receptors.
    Hofmann L; Alexander NS; Sun W; Zhang J; Orban T; Palczewski K
    Biochemistry; 2017 May; 56(17):2338-2348. PubMed ID: 28402104
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A naturally occurring mutation of the opsin gene (T4R) in dogs affects glycosylation and stability of the G protein-coupled receptor.
    Zhu L; Jang GF; Jastrzebska B; Filipek S; Pearce-Kelling SE; Aguirre GD; Stenkamp RE; Acland GM; Palczewski K
    J Biol Chem; 2004 Dec; 279(51):53828-39. PubMed ID: 15459196
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A G Protein-Coupled Receptor Dimerization Interface in Human Cone Opsins.
    Jastrzebska B; Comar WD; Kaliszewski MJ; Skinner KC; Torcasio MH; Esway AS; Jin H; Palczewski K; Smith AW
    Biochemistry; 2017 Jan; 56(1):61-72. PubMed ID: 28045251
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structure of the ligand-free G-protein-coupled receptor opsin.
    Park JH; Scheerer P; Hofmann KP; Choe HW; Ernst OP
    Nature; 2008 Jul; 454(7201):183-7. PubMed ID: 18563085
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human Blue Cone Opsin Regeneration Involves Secondary Retinal Binding with Analog Specificity.
    Srinivasan S; Fernández-Sampedro MA; Morillo M; Ramon E; Jiménez-Rosés M; Cordomí A; Garriga P
    Biophys J; 2018 Mar; 114(6):1285-1294. PubMed ID: 29590586
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Agonist-induced conformational changes in bovine rhodopsin: insight into activation of G-protein-coupled receptors.
    Bhattacharya S; Hall SE; Vaidehi N
    J Mol Biol; 2008 Oct; 382(2):539-55. PubMed ID: 18638482
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Molecular dynamics simulation of dark-adapted rhodopsin and free opsin].
    Kholmudorov KhT; Fel'dman TB; Ostrovskiĭ MA
    Ross Fiziol Zh Im I M Sechenova; 2005 Dec; 91(12):1377-97. PubMed ID: 16493920
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The opsins.
    Terakita A
    Genome Biol; 2005; 6(3):213. PubMed ID: 15774036
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro assays of rod and cone opsin activity: retinoid analogs as agonists and inverse agonists.
    Kono M; Crouch RK
    Methods Mol Biol; 2010; 652():85-94. PubMed ID: 20552423
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Specificity of the chromophore-binding site in human cone opsins.
    Katayama K; Gulati S; Ortega JT; Alexander NS; Sun W; Shenouda MM; Palczewski K; Jastrzebska B
    J Biol Chem; 2019 Apr; 294(15):6082-6093. PubMed ID: 30770468
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physiological studies of the interaction between opsin and chromophore in rod and cone visual pigments.
    Kefalov VJ; Cornwall MC; Fain GL
    Methods Mol Biol; 2010; 652():95-114. PubMed ID: 20552424
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In silico characterisation and chromosomal localisation of human RRH (peropsin)--implications for opsin evolution.
    Bellingham J; Wells DJ; Foster RG
    BMC Genomics; 2003 Jan; 4(1):3. PubMed ID: 12542842
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Beyond spectral tuning: human cone visual pigments adopt different transient conformations for chromophore regeneration.
    Srinivasan S; Cordomí A; Ramon E; Garriga P
    Cell Mol Life Sci; 2016 Mar; 73(6):1253-63. PubMed ID: 26387074
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human red and green cone opsins are
    Salom D; Jin H; Gerken TA; Yu C; Huang L; Palczewski K
    J Biol Chem; 2019 May; 294(20):8123-8133. PubMed ID: 30948514
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glycosylation and palmitoylation are not required for the formation of the X-linked cone opsin visual pigments.
    Ostrer H; Pullarkat RK; Kazmi MA
    Mol Vis; 1998 Dec; 4():28. PubMed ID: 9852167
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms of spectral tuning in blue cone visual pigments. Visible and raman spectroscopy of blue-shifted rhodopsin mutants.
    Lin SW; Kochendoerfer GG; Carroll KS; Wang D; Mathies RA; Sakmar TP
    J Biol Chem; 1998 Sep; 273(38):24583-91. PubMed ID: 9733753
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolutionary analysis of rhodopsin and cone pigments: connecting the three-dimensional structure with spectral tuning and signal transfer.
    Teller DC; Stenkamp RE; Palczewski K
    FEBS Lett; 2003 Nov; 555(1):151-9. PubMed ID: 14630336
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural and functional alterations associated with deutan N94K and R330Q mutations of green cone opsin.
    Srinivasan S; Fernández-Sampedro MA; Ramon E; Garriga P
    Biochim Biophys Acta Mol Basis Dis; 2017 Jul; 1863(7):1840-1847. PubMed ID: 28487225
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Light causes phosphorylation of nonactivated visual pigments in intact mouse rod photoreceptor cells.
    Shi GW; Chen J; Concepcion F; Motamedchaboki K; Marjoram P; Langen R; Chen J
    J Biol Chem; 2005 Dec; 280(50):41184-91. PubMed ID: 16219764
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structure of opsin in its G-protein-interacting conformation.
    Scheerer P; Park JH; Hildebrand PW; Kim YJ; Krauss N; Choe HW; Hofmann KP; Ernst OP
    Nature; 2008 Sep; 455(7212):497-502. PubMed ID: 18818650
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.