These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 28402293)

  • 1. Influence of relative air/water flow velocity on oxygen mass transfer in gravity sewers.
    Carrera L; Springer F; Lipeme-Kouyi G; Buffiere P
    Water Sci Technol; 2017 Apr; 75(7-8):1529-1538. PubMed ID: 28402293
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sulfide emissions in sewer networks: focus on liquid to gas mass transfer coefficient.
    Carrera L; Springer F; Lipeme-Kouyi G; Buffiere P
    Water Sci Technol; 2017 Apr; 75(7-8):1899-1908. PubMed ID: 28452782
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Air-water transfer of hydrogen sulfide: an approach for application in sewer networks.
    Yongsiri C; Vollertsen J; Rasmussen M; Hvitved-Jacobsen T
    Water Environ Res; 2004; 76(1):81-8. PubMed ID: 15058468
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Liquid-gas mass transfer at drop structures.
    Matias N; Nielsen AH; Vollertsen J; Ferreira F; Matos JS
    Water Sci Technol; 2017 May; 75(10):2257-2267. PubMed ID: 28541933
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Introducing the emission process of hydrogen sulfide to a sewer process model (WATS).
    Yongsiri C; Hvitved-Jacobsen T; Vollertsen J; Tanaka N
    Water Sci Technol; 2003; 47(4):85-92. PubMed ID: 12666805
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A different approach for predicting reaeration rates in gravity sewers and completely mixed tanks.
    Lahav O; Binder A; Friedler E
    Water Environ Res; 2006 Jul; 78(7):730-9. PubMed ID: 16929644
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gas phase transport in gravity sewers--A methodology for determination of horizontal gas transport and ventilation.
    Madsen HI; Hvitved-Jacobsen T; Vollertsen J
    Water Environ Res; 2006 Oct; 78(11):2203-9. PubMed ID: 17120439
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Emission of hydrogen sulfide (H
    Jung D; Hatrait L; Gouello J; Ponthieux A; Parez V; Renner C
    Water Sci Technol; 2017 Nov; 76(9-10):2753-2763. PubMed ID: 29168715
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental determination of the H
    Pacheco Fernández M; Barjenbruch M
    Water Sci Technol; 2022 Aug; 86(3):445-456. PubMed ID: 35960829
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A different approach for predicting H(2)S((g)) emission rates in gravity sewers.
    Lahav O; Sagiv A; Friedler E
    Water Res; 2006 Jan; 40(2):259-66. PubMed ID: 16343590
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrogen sulfide emission in sewer networks: a two-phase modeling approach to the sulfur cycle.
    Yongsiri C; Vollertsen J; Hvitved-Jacobsen T
    Water Sci Technol; 2004; 50(4):161-8. PubMed ID: 15484757
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A review of sulfide emissions in sewer networks: overall approach and systemic modelling.
    Carrera L; Springer F; Lipeme-Kouyi G; Buffiere P
    Water Sci Technol; 2016; 73(6):1231-42. PubMed ID: 27003062
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using computational fluid dynamics to describe H
    Teuber K; Broecker T; Bentzen TR; Stephan D; Nützmann G; Hinkelmann R
    Water Sci Technol; 2019 May; 79(10):1934-1946. PubMed ID: 31294710
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Release of hydrogen sulfide under intermittent flow conditions - the potential of simulation models.
    Matias N; Matos R; Ferreira F; Vollertsen J; Matos JS
    Water Sci Technol; 2018 Feb; 77(3-4):777-787. PubMed ID: 29431723
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reaeration in sewers.
    Huisman JL; Weber N; Gujer W
    Water Res; 2004 Mar; 38(5):1089-100. PubMed ID: 14975641
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Implementation of two-phase modeling of hydrogen sulfide in fresh market's combined sewers in Rat Burana, Bangkok.
    Silamat B; Mark O; Djordjević S; Chaiwiwatworakul P
    J Environ Manage; 2024 May; 358():120852. PubMed ID: 38608577
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of pipe material and surfaces on sulfide related odor and corrosion in sewers.
    Nielsen AH; Vollertsen J; Jensen HS; Wium-Andersen T; Hvitved-Jacobsen T
    Water Res; 2008 Sep; 42(15):4206-14. PubMed ID: 18723203
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of fluctuations in gaseous H2S concentrations on sulfide uptake by sewer concrete: The effect of high H2S loads.
    Sun X; Jiang G; Bond PL; Keller J
    Water Res; 2015 Sep; 81():84-91. PubMed ID: 26043374
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Release of hydrogen sulfide in a sewer system under intermittent flow conditions: the Eiceira case study, in Portugal.
    Matias N; Matos RV; Ferreira F; Vollertsen J; Matos JS
    Water Sci Technol; 2017 Apr; 75(7-8):1702-1711. PubMed ID: 28402312
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of controlling factors for the initiation of corrosion of fresh concrete sewers.
    Jiang G; Sun X; Keller J; Bond PL
    Water Res; 2015 Sep; 80():30-40. PubMed ID: 25992907
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.