These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 28402441)

  • 1. Mining prokaryotes for antimicrobial compounds: from diversity to function.
    Tracanna V; de Jong A; Medema MH; Kuipers OP
    FEMS Microbiol Rev; 2017 May; 41(3):417-429. PubMed ID: 28402441
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antimicrobial production by strictly anaerobic Clostridium spp.
    Pahalagedara ASNW; Flint S; Palmer J; Brightwell G; Gupta TB
    Int J Antimicrob Agents; 2020 May; 55(5):105910. PubMed ID: 31991218
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mining biosynthetic gene clusters in Virgibacillus genomes.
    Othoum G; Bougouffa S; Bokhari A; Lafi FF; Gojobori T; Hirt H; Mijakovic I; Bajic VB; Essack M
    BMC Genomics; 2019 Sep; 20(1):696. PubMed ID: 31481022
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toolbox for Antibiotics Discovery from Microorganisms.
    Fisch KM; Schäberle TF
    Arch Pharm (Weinheim); 2016 Sep; 349(9):683-91. PubMed ID: 27311607
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification and classification of known and putative antimicrobial compounds produced by a wide variety of Bacillales species.
    Zhao X; Kuipers OP
    BMC Genomics; 2016 Nov; 17(1):882. PubMed ID: 27821051
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expansion of RiPP biosynthetic space through integration of pan-genomics and machine learning uncovers a novel class of lanthipeptides.
    Kloosterman AM; Cimermancic P; Elsayed SS; Du C; Hadjithomas M; Donia MS; Fischbach MA; van Wezel GP; Medema MH
    PLoS Biol; 2020 Dec; 18(12):e3001026. PubMed ID: 33351797
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Full-length title: NRPPUR database search and in vitro analysis identify an NRPS-PKS biosynthetic gene cluster with a potential antibiotic effect.
    Fritz S; Rajaonison A; Chabrol O; Raoult D; Rolain JM; Merhej V
    BMC Bioinformatics; 2018 Dec; 19(1):463. PubMed ID: 30509188
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent development of computational resources for new antibiotics discovery.
    Kim HU; Blin K; Lee SY; Weber T
    Curr Opin Microbiol; 2017 Oct; 39():113-120. PubMed ID: 29156309
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A systematic comparison of natural product potential, with an emphasis on RiPPs, by mining of bacteria of three large ecosystems.
    Yi Y; Liang L; de Jong A; Kuipers OP
    Genomics; 2024 Jul; 116(4):110880. PubMed ID: 38857812
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genomic charting of ribosomally synthesized natural product chemical space facilitates targeted mining.
    Skinnider MA; Johnston CW; Edgar RE; Dejong CA; Merwin NJ; Rees PN; Magarvey NA
    Proc Natl Acad Sci U S A; 2016 Oct; 113(42):E6343-E6351. PubMed ID: 27698135
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mining bacterial genomes to reveal secret synergy.
    Alanjary M; Medema MH
    J Biol Chem; 2018 Dec; 293(52):19996-19997. PubMed ID: 30593529
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeting Bacterial Genomes for Natural Product Discovery.
    Kalkreuter E; Pan G; Cepeda AJ; Shen B
    Trends Pharmacol Sci; 2020 Jan; 41(1):13-26. PubMed ID: 31822352
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular beacons to identify gifted microbes for genome mining.
    Baltz RH
    J Antibiot (Tokyo); 2017 May; 70(5):639-646. PubMed ID: 28119518
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coupling Mass Spectral and Genomic Information to Improve Bacterial Natural Product Discovery Workflows.
    Crüsemann M
    Mar Drugs; 2021 Mar; 19(3):. PubMed ID: 33807702
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeted antibiotic discovery through biosynthesis-associated resistance determinants: target directed genome mining.
    O'Neill EC; Schorn M; Larson CB; Millán-Aguiñaga N
    Crit Rev Microbiol; 2019 May; 45(3):255-277. PubMed ID: 30985219
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Precursor peptide-targeted mining of more than one hundred thousand genomes expands the lanthipeptide natural product family.
    Walker MC; Eslami SM; Hetrick KJ; Ackenhusen SE; Mitchell DA; van der Donk WA
    BMC Genomics; 2020 Jun; 21(1):387. PubMed ID: 32493223
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DeepRiPP integrates multiomics data to automate discovery of novel ribosomally synthesized natural products.
    Merwin NJ; Mousa WK; Dejong CA; Skinnider MA; Cannon MJ; Li H; Dial K; Gunabalasingam M; Johnston C; Magarvey NA
    Proc Natl Acad Sci U S A; 2020 Jan; 117(1):371-380. PubMed ID: 31871149
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome mining for ribosomally synthesized and post-translationally modified peptides (RiPPs) in anaerobic bacteria.
    Letzel AC; Pidot SJ; Hertweck C
    BMC Genomics; 2014 Nov; 15(1):983. PubMed ID: 25407095
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The evolution of genome mining in microbes - a review.
    Ziemert N; Alanjary M; Weber T
    Nat Prod Rep; 2016 Aug; 33(8):988-1005. PubMed ID: 27272205
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New Insights into the Biosynthetic Logic of Ribosomally Synthesized and Post-translationally Modified Peptide Natural Products.
    Ortega MA; van der Donk WA
    Cell Chem Biol; 2016 Jan; 23(1):31-44. PubMed ID: 26933734
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.