These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Identification and classification of known and putative antimicrobial compounds produced by a wide variety of Bacillales species. Zhao X; Kuipers OP BMC Genomics; 2016 Nov; 17(1):882. PubMed ID: 27821051 [TBL] [Abstract][Full Text] [Related]
6. Expansion of RiPP biosynthetic space through integration of pan-genomics and machine learning uncovers a novel class of lanthipeptides. Kloosterman AM; Cimermancic P; Elsayed SS; Du C; Hadjithomas M; Donia MS; Fischbach MA; van Wezel GP; Medema MH PLoS Biol; 2020 Dec; 18(12):e3001026. PubMed ID: 33351797 [TBL] [Abstract][Full Text] [Related]
7. Full-length title: NRPPUR database search and in vitro analysis identify an NRPS-PKS biosynthetic gene cluster with a potential antibiotic effect. Fritz S; Rajaonison A; Chabrol O; Raoult D; Rolain JM; Merhej V BMC Bioinformatics; 2018 Dec; 19(1):463. PubMed ID: 30509188 [TBL] [Abstract][Full Text] [Related]
8. Recent development of computational resources for new antibiotics discovery. Kim HU; Blin K; Lee SY; Weber T Curr Opin Microbiol; 2017 Oct; 39():113-120. PubMed ID: 29156309 [TBL] [Abstract][Full Text] [Related]
9. A systematic comparison of natural product potential, with an emphasis on RiPPs, by mining of bacteria of three large ecosystems. Yi Y; Liang L; de Jong A; Kuipers OP Genomics; 2024 Jul; 116(4):110880. PubMed ID: 38857812 [TBL] [Abstract][Full Text] [Related]
10. Genomic charting of ribosomally synthesized natural product chemical space facilitates targeted mining. Skinnider MA; Johnston CW; Edgar RE; Dejong CA; Merwin NJ; Rees PN; Magarvey NA Proc Natl Acad Sci U S A; 2016 Oct; 113(42):E6343-E6351. PubMed ID: 27698135 [TBL] [Abstract][Full Text] [Related]
14. Coupling Mass Spectral and Genomic Information to Improve Bacterial Natural Product Discovery Workflows. Crüsemann M Mar Drugs; 2021 Mar; 19(3):. PubMed ID: 33807702 [TBL] [Abstract][Full Text] [Related]
16. Precursor peptide-targeted mining of more than one hundred thousand genomes expands the lanthipeptide natural product family. Walker MC; Eslami SM; Hetrick KJ; Ackenhusen SE; Mitchell DA; van der Donk WA BMC Genomics; 2020 Jun; 21(1):387. PubMed ID: 32493223 [TBL] [Abstract][Full Text] [Related]
17. DeepRiPP integrates multiomics data to automate discovery of novel ribosomally synthesized natural products. Merwin NJ; Mousa WK; Dejong CA; Skinnider MA; Cannon MJ; Li H; Dial K; Gunabalasingam M; Johnston C; Magarvey NA Proc Natl Acad Sci U S A; 2020 Jan; 117(1):371-380. PubMed ID: 31871149 [TBL] [Abstract][Full Text] [Related]
18. Genome mining for ribosomally synthesized and post-translationally modified peptides (RiPPs) in anaerobic bacteria. Letzel AC; Pidot SJ; Hertweck C BMC Genomics; 2014 Nov; 15(1):983. PubMed ID: 25407095 [TBL] [Abstract][Full Text] [Related]
19. The evolution of genome mining in microbes - a review. Ziemert N; Alanjary M; Weber T Nat Prod Rep; 2016 Aug; 33(8):988-1005. PubMed ID: 27272205 [TBL] [Abstract][Full Text] [Related]
20. New Insights into the Biosynthetic Logic of Ribosomally Synthesized and Post-translationally Modified Peptide Natural Products. Ortega MA; van der Donk WA Cell Chem Biol; 2016 Jan; 23(1):31-44. PubMed ID: 26933734 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]