These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

331 related articles for article (PubMed ID: 28402651)

  • 1. DNA Bipedal Motor Achieves a Large Number of Steps Due to Operation Using Microfluidics-Based Interface.
    Tomov TE; Tsukanov R; Glick Y; Berger Y; Liber M; Avrahami D; Gerber D; Nir E
    ACS Nano; 2017 Apr; 11(4):4002-4008. PubMed ID: 28402651
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Developing DNA nanotechnology using single-molecule fluorescence.
    Tsukanov R; Tomov TE; Liber M; Berger Y; Nir E
    Acc Chem Res; 2014 Jun; 47(6):1789-98. PubMed ID: 24828396
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A bipedal DNA motor that travels back and forth between two DNA origami tiles.
    Liber M; Tomov TE; Tsukanov R; Berger Y; Nir E
    Small; 2015 Feb; 11(5):568-75. PubMed ID: 25236793
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rational design of DNA motors: fuel optimization through single-molecule fluorescence.
    Tomov TE; Tsukanov R; Liber M; Masoud R; Plavner N; Nir E
    J Am Chem Soc; 2013 Aug; 135(32):11935-41. PubMed ID: 23879228
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA Origami Nanomachines.
    Endo M; Sugiyama H
    Molecules; 2018 Jul; 23(7):. PubMed ID: 30022011
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studying the structural dynamics of bipedal DNA motors with single-molecule fluorescence spectroscopy.
    Masoud R; Tsukanov R; Tomov TE; Plavner N; Liber M; Nir E
    ACS Nano; 2012 Jul; 6(7):6272-83. PubMed ID: 22663255
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Straightforward Micropatterning of Oligonucleotides in Microfluidics by Novel Spin-On ZrO₂ Surfaces.
    Della Giustina G; Zambon A; Lamberti F; Elvassore N; Brusatin G
    ACS Appl Mater Interfaces; 2015 Jun; 7(24):13280-8. PubMed ID: 26017394
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic Actuation of DNA-Assembled Plasmonic Nanostructures in Microfluidic Cell-Sized Compartments.
    Göpfrich K; Urban MJ; Frey C; Platzman I; Spatz JP; Liu N
    Nano Lett; 2020 Mar; 20(3):1571-1577. PubMed ID: 32083879
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Discovering anomalous hybridization kinetics on DNA nanostructures using single-molecule fluorescence microscopy.
    Johnson-Buck A; Walter NG
    Methods; 2014 May; 67(2):177-84. PubMed ID: 24602840
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA bipedal motor walking dynamics: an experimental and theoretical study of the dependency on step size.
    Khara DC; Schreck JS; Tomov TE; Berger Y; Ouldridge TE; Doye JPK; Nir E
    Nucleic Acids Res; 2018 Feb; 46(3):1553-1561. PubMed ID: 29294083
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigating the dynamics of surface-immobilized DNA nanomachines.
    Dunn KE; Trefzer MA; Johnson S; Tyrrell AM
    Sci Rep; 2016 Jul; 6():29581. PubMed ID: 27387252
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advancing Wireframe DNA Nanostructures Using Single-Molecule Fluorescence Microscopy Techniques.
    Platnich CM; Hariri AA; Sleiman HF; Cosa G
    Acc Chem Res; 2019 Nov; 52(11):3199-3210. PubMed ID: 31675207
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-time monitoring of DNA immobilization and detection of DNA polymerase activity by a microfluidic nanoplasmonic platform.
    Roether J; Chu KY; Willenbacher N; Shen AQ; Bhalla N
    Biosens Bioelectron; 2019 Oct; 142():111528. PubMed ID: 31362202
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Programming Motions of DNA Origami Nanomachines.
    Wang F; Zhang X; Liu X; Fan C; Li Q
    Small; 2019 Jun; 15(26):e1900013. PubMed ID: 30908896
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cation-Activated Avidity for Rapid Reconfiguration of DNA Nanodevices.
    Marras AE; Shi Z; Lindell MG; Patton RA; Huang CM; Zhou L; Su HJ; Arya G; Castro CE
    ACS Nano; 2018 Sep; 12(9):9484-9494. PubMed ID: 30169013
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid Microfluidic Dilution for Single-Molecule Spectroscopy of Low-Affinity Biomolecular Complexes.
    Zijlstra N; Dingfelder F; Wunderlich B; Zosel F; Benke S; Nettels D; Schuler B
    Angew Chem Int Ed Engl; 2017 Jun; 56(25):7126-7129. PubMed ID: 28510311
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Localized DNA Hybridization Chain Reactions on DNA Origami.
    Bui H; Shah S; Mokhtar R; Song T; Garg S; Reif J
    ACS Nano; 2018 Feb; 12(2):1146-1155. PubMed ID: 29357217
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-Molecule Analysis and Engineering of DNA Motors.
    Mohapatra S; Lin CT; Feng XA; Basu A; Ha T
    Chem Rev; 2020 Jan; 120(1):36-78. PubMed ID: 31661246
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidic DNA Stretching Device for Single-Molecule Diagnostics.
    Onoshima D; Baba Y
    Methods Mol Biol; 2017; 1547():105-111. PubMed ID: 28044290
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-throughput, non-equilibrium studies of single biomolecules using glass-made nanofluidic devices.
    Fontana M; Fijen C; Lemay SG; Mathwig K; Hohlbein J
    Lab Chip; 2018 Dec; 19(1):79-86. PubMed ID: 30468446
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.