These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 28402664)

  • 1. 1,4-Dicarbofunctionalization of 4-Fluoroaryl Grignard and Lithium Reagents with Disubstituted Malononitriles.
    Malapit CA; Luvaga IK; Reeves JT; Volchkov I; Busacca CA; Howell AR; Senanayake CH
    J Org Chem; 2017 May; 82(9):4993-4997. PubMed ID: 28402664
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transnitrilation from Dimethylmalononitrile to Aryl Grignard and Lithium Reagents: A Practical Method for Aryl Nitrile Synthesis.
    Reeves JT; Malapit CA; Buono FG; Sidhu KP; Marsini MA; Sader CA; Fandrick KR; Busacca CA; Senanayake CH
    J Am Chem Soc; 2015 Jul; 137(29):9481-8. PubMed ID: 26151426
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aryl- and alkenyllithium preparations and copper-catalyzed reaction between the derived magnesium reagents and the monoacetate of 4-cyclopentene-1,3-diol.
    Nakata K; Kobayashi Y
    Org Lett; 2005 Mar; 7(7):1319-22. PubMed ID: 15787496
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective Halogen-Lithium Exchange Reaction of Bromine-Substituted 25,26,27,28-Tetrapropoxycalix[4]arene.
    Larsen M; Jørgensen M
    J Org Chem; 1996 Sep; 61(19):6651-6655. PubMed ID: 11667536
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Grignard reagents: alkoxide-directed iodine-magnesium exchange at sp3 centers.
    Fleming FF; Gudipati S; Vu VA; Mycka RJ; Knochel P
    Org Lett; 2007 Oct; 9(22):4507-9. PubMed ID: 17918855
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving the Halogen-Magnesium Exchange by using New Turbo-Grignard Reagents.
    Ziegler DS; Wei B; Knochel P
    Chemistry; 2019 Feb; 25(11):2695-2703. PubMed ID: 30230067
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sequential one-pot addition of excess aryl-Grignard reagents and electrophiles to O-alkyl thioformates.
    Murai T; Morikawa K; Maruyama T
    Chemistry; 2013 Sep; 19(39):13112-9. PubMed ID: 23946145
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sequential Addition Reaction of Sulfanylmethyllithiums and Grignard Reagents to Thioformamides Leading to the Formation of 2-Phenyl-2-sulfanylethyl Tertiary Amines.
    Murai T; Mutoh N
    J Org Chem; 2016 Sep; 81(18):8131-4. PubMed ID: 27565031
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Decyanation-(hetero)arylation of malononitriles to access α-(hetero)arylnitriles.
    Mills LR; Patel P; Rousseaux SAL
    Org Biomol Chem; 2022 Aug; 20(30):5933-5937. PubMed ID: 35315852
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved synthesis of aryltrialkoxysilanes via treatment of aryl Grignard or lithium reagents with tetraalkyl orthosilicates.
    Manoso AS; Ahn C; Soheili A; Handy CJ; Correia R; Seganish WM; Deshong P
    J Org Chem; 2004 Nov; 69(24):8305-14. PubMed ID: 15549801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rhodium-Catalyzed Transnitrilation of Aryl Boronic Acids with Dimethylmalononitrile.
    Malapit CA; Reeves JT; Busacca CA; Howell AR; Senanayake CH
    Angew Chem Int Ed Engl; 2016 Jan; 55(1):326-30. PubMed ID: 26483150
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly efficient one-pot access to functionalized arylboronic acids via noncryogenic bromine/magnesium exchanges.
    Leermann T; Leroux FR; Colobert F
    Org Lett; 2011 Sep; 13(17):4479-81. PubMed ID: 21834521
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Halogen-Metal Exchange on Bromoheterocyclics with Substituents Containing an Acidic Proton via Formation of a Magnesium Intermediate.
    Tian Q; Shang S; Wang H; Shi G; Li Z; Yuan J
    Molecules; 2017 Nov; 22(11):. PubMed ID: 29137130
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Iron-copper cooperative catalysis in the reactions of alkyl Grignard reagents: exchange reaction with alkenes and carbometalation of alkynes.
    Shirakawa E; Ikeda D; Masui S; Yoshida M; Hayashi T
    J Am Chem Soc; 2012 Jan; 134(1):272-9. PubMed ID: 22128888
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In Situ Generation of Magnesium- and Calcium-Based Grignard Reagents for Amide Synthesis.
    Schüler P; Sengupta S; Krieck S; Westerhausen M
    Chemistry; 2023 Jul; 29(40):e202300833. PubMed ID: 37190951
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetically Controlled, Highly Chemoselective Acylation of Functionalized Grignard Reagents with Amides by N-C Cleavage.
    Li G; Szostak M
    Chemistry; 2020 Jan; 26(3):611-615. PubMed ID: 31696589
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isopropylmagnesium chloride-promoted unilateral addition of Grignard reagents to β-diketones: one-pot syntheses of β-tertiary hydroxyl ketones or 3-substituted cyclic-2-enones.
    Yuan R; Zhao D; Zhang LY; Pan X; Yang Y; Wang P; Li HF; Da CS
    Org Biomol Chem; 2016 Jan; 14(2):724-728. PubMed ID: 26575990
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TMSCH(2)Li and TMSCH(2)Li-LiDMAE: efficient reagents for noncryogenic halogen-lithium exchange in bromopyridines.
    Doudouh A; Woltermann C; Gros PC
    J Org Chem; 2007 Jun; 72(13):4978-80. PubMed ID: 17523672
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Revelation of the difference between arylzinc reagents prepared from aryl Grignard and aryllithium reagents respectively: kinetic and structural features.
    Jin L; Liu C; Liu J; Hu F; Lan Y; Batsanov AS; Howard JA; Marder TB; Lei A
    J Am Chem Soc; 2009 Nov; 131(46):16656-7. PubMed ID: 19919140
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The quest for chiral Grignard reagents.
    Hoffmann RW
    Chem Soc Rev; 2003 Jul; 32(4):225-30. PubMed ID: 12875028
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.