These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

451 related articles for article (PubMed ID: 28402718)

  • 1. Prions on the run: How extracellular vesicles serve as delivery vehicles for self-templating protein aggregates.
    Liu S; Hossinger A; Göbbels S; Vorberg IM
    Prion; 2017 Mar; 11(2):98-112. PubMed ID: 28402718
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Horizontal Transmission of Cytosolic Sup35 Prions by Extracellular Vesicles.
    Liu S; Hossinger A; Hofmann JP; Denner P; Vorberg IM
    mBio; 2016 Jul; 7(4):. PubMed ID: 27406566
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sup35p in Its Soluble and Prion States Is Packaged inside Extracellular Vesicles.
    Kabani M; Melki R
    mBio; 2015 Aug; 6(4):. PubMed ID: 26286691
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell-to-cell propagation of infectious cytosolic protein aggregates.
    Hofmann JP; Denner P; Nussbaum-Krammer C; Kuhn PH; Suhre MH; Scheibel T; Lichtenthaler SF; Schätzl HM; Bano D; Vorberg IM
    Proc Natl Acad Sci U S A; 2013 Apr; 110(15):5951-6. PubMed ID: 23509289
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glucose availability dictates the export of the soluble and prion forms of Sup35p via periplasmic or extracellular vesicles.
    Kabani M; Pilard M; Melki R
    Mol Microbiol; 2020 Aug; 114(2):322-332. PubMed ID: 32339313
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Life cycle of cytosolic prions.
    Hofmann J; Vorberg I
    Prion; 2013; 7(5):369-77. PubMed ID: 24021964
    [TBL] [Abstract][Full Text] [Related]  

  • 7. More than just trash bins? Potential roles for extracellular vesicles in the vertical and horizontal transmission of yeast prions.
    Kabani M; Melki R
    Curr Genet; 2016 May; 62(2):265-70. PubMed ID: 26553335
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dictyostelium discoideum has a highly Q/N-rich proteome and shows an unusual resilience to protein aggregation.
    Malinovska L; Palm S; Gibson K; Verbavatz JM; Alberti S
    Proc Natl Acad Sci U S A; 2015 May; 112(20):E2620-9. PubMed ID: 25941378
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interspecies transmission of prions.
    Afanasieva EG; Kushnirov VV; Ter-Avanesyan MD
    Biochemistry (Mosc); 2011 Dec; 76(13):1375-84. PubMed ID: 22339593
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exosomes: a bubble ride for prions?
    Février B; Vilette D; Laude H; Raposo G
    Traffic; 2005 Jan; 6(1):10-7. PubMed ID: 15569241
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Getting a grip on prions: oligomers, amyloids, and pathological membrane interactions.
    Caughey B; Baron GS; Chesebro B; Jeffrey M
    Annu Rev Biochem; 2009; 78():177-204. PubMed ID: 19231987
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Yeast as a model for studying the prion and amyloid occurrence].
    Kryndushkin DS; Aleksandrov IM; Kushnirov VV; Ter-Avanesian MD
    Ross Fiziol Zh Im I M Sechenova; 2004 May; 90(5):645-57. PubMed ID: 15341089
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A mathematical model of the dynamics of prion aggregates with chaperone-mediated fragmentation.
    Davis JK; Sindi SS
    J Math Biol; 2016 May; 72(6):1555-78. PubMed ID: 26297259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sequence features governing aggregation or degradation of prion-like proteins.
    Cascarina SM; Paul KR; Machihara S; Ross ED
    PLoS Genet; 2018 Jul; 14(7):e1007517. PubMed ID: 30005071
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Neurodegenerative amyloidoses: the yeast model].
    Vishnevskaia AB; Kushnirov VV; Ter-Avanesian MD
    Mol Biol (Mosk); 2007; 41(2):346-54. PubMed ID: 17514901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of Q/N-rich, polyQ, and non-polyQ amyloids on the de novo formation of the [PSI+] prion in yeast and aggregation of Sup35 in vitro.
    Derkatch IL; Uptain SM; Outeiro TF; Krishnan R; Lindquist SL; Liebman SW
    Proc Natl Acad Sci U S A; 2004 Aug; 101(35):12934-9. PubMed ID: 15326312
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [New aspects of research upon the yeast Saccharomyces cerevisiae [PSI+] prion].
    Ishikawa T
    Postepy Biochem; 2007; 53(2):182-7. PubMed ID: 17969880
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of glutamine/asparagine content on aggregation and heterologous prion induction by yeast prion-like domains.
    Shattuck JE; Waechter AC; Ross ED
    Prion; 2017 Jul; 11(4):249-264. PubMed ID: 28665753
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peptide sequences converting polyglutamine into a prion in yeast.
    Odani W; Urata K; Okuda M; Okuma S; Koyama H; Pack CG; Fujiwara K; Nojima T; Kinjo M; Kawai-Noma S; Taguchi H
    FEBS J; 2015 Feb; 282(3):477-90. PubMed ID: 25406629
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigating the spreading and toxicity of prion-like proteins using the metazoan model organism C. elegans.
    Nussbaum-Krammer CI; Neto MF; Brielmann RM; Pedersen JS; Morimoto RI
    J Vis Exp; 2015 Jan; (95):52321. PubMed ID: 25591151
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.