BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

384 related articles for article (PubMed ID: 28402887)

  • 1. The Closed State of the Thin Filament Is Not Occupied in Fully Activated Skeletal Muscle.
    Bershitsky SY; Koubassova NA; Ferenczi MA; Kopylova GV; Narayanan T; Tsaturyan AK
    Biophys J; 2017 Apr; 112(7):1455-1461. PubMed ID: 28402887
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tropomyosin movement is described by a quantitative high-resolution model of X-ray diffraction of contracting muscle.
    Koubassova NA; Bershitsky SY; Ferenczi MA; Narayanan T; Tsaturyan AK
    Eur Biophys J; 2017 May; 46(4):335-342. PubMed ID: 27640143
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of contraction in striated muscle.
    Gordon AM; Homsher E; Regnier M
    Physiol Rev; 2000 Apr; 80(2):853-924. PubMed ID: 10747208
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spontaneous transitions of actin-bound tropomyosin toward blocked and closed states.
    Kiani FA; Lehman W; Fischer S; Rynkiewicz MJ
    J Gen Physiol; 2019 Jan; 151(1):4-8. PubMed ID: 30442774
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ca2+- and S1-induced conformational changes of reconstituted skeletal muscle thin filaments observed by fluorescence energy transfer spectroscopy: structural evidence for three States of thin filament.
    Hai H; Sano K; Maeda K; MaƩda Y; Miki M
    J Biochem; 2002 Mar; 131(3):407-18. PubMed ID: 11872170
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparison of muscle thin filament models obtained from electron microscopy reconstructions and low-angle X-ray fibre diagrams from non-overlap muscle.
    Poole KJ; Lorenz M; Evans G; Rosenbaum G; Pirani A; Craig R; Tobacman LS; Lehman W; Holmes KC
    J Struct Biol; 2006 Aug; 155(2):273-84. PubMed ID: 16793285
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temperature-induced structural changes in the myosin thick filament of skinned rabbit psoas muscle.
    Malinchik S; Xu S; Yu LC
    Biophys J; 1997 Nov; 73(5):2304-12. PubMed ID: 9370427
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cooperativity of myosin interaction with thin filaments is enhanced by stabilizing substitutions in tropomyosin.
    Shchepkin DV; Nabiev SR; Kopylova GV; Matyushenko AM; Levitsky DI; Bershitsky SY; Tsaturyan AK
    J Muscle Res Cell Motil; 2017 Apr; 38(2):183-191. PubMed ID: 28540577
    [TBL] [Abstract][Full Text] [Related]  

  • 9. States of thin filament regulatory proteins as revealed by combined cross-linking/X-ray diffraction techniques.
    Iwamoto H; Oiwa K; Suzuki T; Fujisawa T
    J Mol Biol; 2002 Apr; 317(5):707-20. PubMed ID: 11955019
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The reason for the low Ca
    Avrova SV; Karpicheva OE; Rysev NA; Simonyan AO; Sirenko VV; Redwood CS; Borovikov YS
    Biochem Biophys Res Commun; 2018 Jul; 502(2):209-214. PubMed ID: 29792862
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mini-thin filaments regulated by troponin-tropomyosin.
    Gong H; Hatch V; Ali L; Lehman W; Craig R; Tobacman LS
    Proc Natl Acad Sci U S A; 2005 Jan; 102(3):656-61. PubMed ID: 15644437
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Troponin-I-induced tropomyosin pivoting defines thin-filament function in relaxed and active muscle.
    Lehman W; Rynkiewicz MJ
    J Gen Physiol; 2023 Jul; 155(7):. PubMed ID: 37249525
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The interchain disulfide cross-linking of tropomyosin alters its regulatory properties and interaction with actin filament.
    Matyushenko AM; Artemova NV; Shchepkin DV; Kopylova GV; Nabiev SR; Nikitina LV; Levitsky DI; Bershitsky SY
    Biochem Biophys Res Commun; 2017 Jan; 482(2):305-309. PubMed ID: 27856252
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The molecular mechanisms of a high Ca
    Avrova SV; Karpicheva OE; Simonyan AO; Sirenko VV; Redwood CS; Borovikov YS
    Biochem Biophys Res Commun; 2019 Jul; 515(2):372-377. PubMed ID: 31155291
    [TBL] [Abstract][Full Text] [Related]  

  • 15. X-ray diffraction evidence for the extensibility of actin and myosin filaments during muscle contraction.
    Wakabayashi K; Sugimoto Y; Tanaka H; Ueno Y; Takezawa Y; Amemiya Y
    Biophys J; 1994 Dec; 67(6):2422-35. PubMed ID: 7779179
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The position of tropomyosin in muscle thin filaments.
    Seymour J; O'Brien EJ
    Nature; 1980 Feb; 283(5748):680-2. PubMed ID: 6892575
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thin Filament Structure and the Steric Blocking Model.
    Lehman W
    Compr Physiol; 2016 Mar; 6(2):1043-69. PubMed ID: 27065174
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intensity changes of actin-based layer lines from frog skeletal muscles during an isometric contraction.
    Wakabayashi K; Ueno Y; Amemiya Y; Tanaka H
    Adv Exp Med Biol; 1988; 226():353-67. PubMed ID: 3261487
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural changes in actin-tropomyosin during muscle regulation: computer modelling of low-angle X-ray diffraction data.
    al-Khayat HA; Yagi N; Squire JM
    J Mol Biol; 1995 Oct; 252(5):611-32. PubMed ID: 7563078
    [TBL] [Abstract][Full Text] [Related]  

  • 20. X-ray Diffraction Studies on the Structural Origin of Dynamic Tension Recovery Following Ramp-Shaped Releases in High-Ca Rigor Muscle Fibers.
    Sugi H; Yamaguchi M; Ohno T; Okuyama H; Yagi N
    Int J Mol Sci; 2020 Feb; 21(4):. PubMed ID: 32069889
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.