BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 2840304)

  • 21. A family of hereditary stomatocytosis associated with normal level of Na+-K+-ATPase activity of red blood cells.
    Mutoh S; Sasaki R; Takaku F; Aoyama M; Moriyama S; Yoshimoto M; Yawata Y
    Am J Hematol; 1983 Apr; 14(2):113-20. PubMed ID: 6301265
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Relation between energy metabolism, Na+ and K+ levels, and Na,K-ATPase activity in erythrocytes and their volume and shape during overheating].
    Bondarev DP; Kozlov NB
    Vopr Med Khim; 1988; 34(5):87-91. PubMed ID: 2851213
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Energy metabolism in canine erythrocytes associated with inherited high Na+- and K+-stimulated adenosine triphosphatase activity.
    Maede Y; Inaba M
    Am J Vet Res; 1987 Jan; 48(1):114-8. PubMed ID: 3030164
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Erythrocyte Na+-K+ ATPase activity inhibition & increase in red cell fragility in experimental myocarditis produced by Indian red scorpion venom.
    Radha Krishna Murthy K; Anita AG; Dave BN; Billimoria FR
    Indian J Med Res; 1988 Dec; 88():536-40. PubMed ID: 2854115
    [No Abstract]   [Full Text] [Related]  

  • 25. Several cation transporters and volume regulation in high-K dog red blood cells.
    Fujise H; Yamada I; Masuda M; Miyazawa Y; Ogawa E; Takahashi R
    Am J Physiol; 1991 Mar; 260(3 Pt 1):C589-97. PubMed ID: 1848403
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Decreased erythrocyte Na+,K(+)-ATPase activity associated with cellular potassium loss in extremely low birth weight infants with nonoliguric hyperkalemia.
    Stefano JL; Norman ME; Morales MC; Goplerud JM; Mishra OP; Delivoria-Papadopoulos M
    J Pediatr; 1993 Feb; 122(2):276-84. PubMed ID: 8381483
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dog red blood cells exhibit a Ca-stimulated increase in K permeability in the absence of (Na,K)ATPase activity.
    Richhardt H; Fuhrmann GF; Knauf PA
    Nature; 1979 May; 279(5710):248-50. PubMed ID: 220543
    [No Abstract]   [Full Text] [Related]  

  • 28. Na,K-ATPase in dog red cells. Immunological identification and maturation-associated degradation by the proteolytic system.
    Inaba M; Maede Y
    J Biol Chem; 1986 Dec; 261(34):16099-105. PubMed ID: 3023340
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Erythrocytic enzyme activity, ion concentrations, osmotic fragility, and glutathione stability in bovine erythropoietic porphyria and its carrier state.
    Kaneko JJ; Mills R
    Am J Vet Res; 1969 Oct; 30(10):1805-10. PubMed ID: 5824907
    [No Abstract]   [Full Text] [Related]  

  • 30. Na-dependent glutamate transport in high K and high glutathione (HK/HG) and high K and low glutathione (HK/LG) dog red blood cells.
    Fujise H; Hamada Y; Mori M; Ochiai H
    Biochim Biophys Acta; 1995 Oct; 1239(1):22-6. PubMed ID: 7548139
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Na,K-ATPase activity of erythrocytes of rats during prolonged starvation].
    Skverchinskaia EA; Tavrovskaia TV; Novozhilov AV
    Zh Evol Biokhim Fiziol; 2013; 49(2):144-52. PubMed ID: 23789400
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Measurement of erythrocyte lipids, lipid peroxidation, antioxidants and osmotic fragility in cervical cancer patients.
    Kolanjiappan K; Manoharan S; Kayalvizhi M
    Clin Chim Acta; 2002 Dec; 326(1-2):143-9. PubMed ID: 12417105
    [TBL] [Abstract][Full Text] [Related]  

  • 33. L-sorbose does not cause hemolysis in dog erythrocytes with inherited high Na, K-ATPase activity.
    Goto I; Shimizu T; Maede Y
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1992 Apr; 101(3):657-60. PubMed ID: 1354145
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Effect of age on the activity of Mg-Na-K-ATPase, as well as on the K and Na concentration in human erythrocytes].
    Platt D; Haas H
    Z Gerontol; 1979; 12(1):73-88. PubMed ID: 219631
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Relationship between (Na + K)-ATPase activity, lipid peroxidation and fatty acid profile in erythrocytes of hypertensive and normotensive subjects.
    Rodrigo R; Bächler JP; Araya J; Prat H; Passalacqua W
    Mol Cell Biochem; 2007 Sep; 303(1-2):73-81. PubMed ID: 17410406
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Na+K+ATPase activity and ouabain binding sites in erythrocytes in hyperthyroidism before and after treatment.
    De Riva C; Chen S; Virgili F; Frigato F
    J Endocrinol Invest; 1992 May; 15(5):363-7. PubMed ID: 1324264
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Increased Na+,K(+)-pump activity in erythrocytes of rabbits fed cholesterol.
    Makarov VL; Kuznetsov SR
    Int J Exp Pathol; 1995 Apr; 76(2):93-6. PubMed ID: 7786767
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Erythrocyte osmotic fragility and cation concentrations during experimentally induced bovine anaplasmosis.
    Silva IM; Hubsch C; Ysern-Caldentey M
    Comp Biochem Physiol A Comp Physiol; 1989; 94(3):455-9. PubMed ID: 2574096
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Alcohol-related high blood pressure, and erythrocyte Na+/K(+)-ATPase activity, sodium and potassium concentrations].
    Tsuritani I; Teraoka K; Miyagoshi M; Honda R; Ishizaki M; Yamada Y
    Rinsho Byori; 1993 Dec; 41(12):1353-7. PubMed ID: 8295347
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Low erythrocyte Na/K-pump activity and number in northeast Thailand adults: evidence suggesting an acquired disorder.
    Tosukhowong P; Tungsanga K; Kittinantavorakoon C; Chaitachawong C; Pansin P; Sriboonlue P; Sitprija V
    Metabolism; 1996 Jul; 45(7):804-9. PubMed ID: 8692012
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.