These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 28403171)

  • 1. Bacterial biofilm under flow: First a physical struggle to stay, then a matter of breathing.
    Thomen P; Robert J; Monmeyran A; Bitbol AF; Douarche C; Henry N
    PLoS One; 2017; 12(4):e0175197. PubMed ID: 28403171
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flow cell hydrodynamics and their effects on E. coli biofilm formation under different nutrient conditions and turbulent flow.
    Teodósio JS; Simões M; Melo LF; Mergulhão FJ
    Biofouling; 2011 Jan; 27(1):1-11. PubMed ID: 21082456
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Escherichia coli biofilm formation and dispersion under hydrodynamic conditions on metal surfaces.
    Oder M; Arlič M; Bohinc K; Fink R
    Int J Environ Health Res; 2018 Feb; 28(1):55-63. PubMed ID: 29232959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding the effects of aerodynamic and hydrodynamic shear forces on Pseudomonas aeruginosa biofilm growth.
    Zhang Y; Silva DM; Young P; Traini D; Li M; Ong HX; Cheng S
    Biotechnol Bioeng; 2022 Jun; 119(6):1483-1497. PubMed ID: 35274289
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cohesiveness and hydrodynamic properties of young drinking water biofilms.
    Abe Y; Skali-Lami S; Block JC; Francius G
    Water Res; 2012 Mar; 46(4):1155-66. PubMed ID: 22221338
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic Changes in Biofilm Structures under Dynamic Flow Conditions.
    Wang S; Zhu H; Zheng G; Dong F; Liu C
    Appl Environ Microbiol; 2022 Nov; 88(22):e0107222. PubMed ID: 36300948
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Drinking water biofilm cohesiveness changes under chlorination or hydrodynamic stress.
    Mathieu L; Bertrand I; Abe Y; Angel E; Block JC; Skali-Lami S; Francius G
    Water Res; 2014 May; 55():175-84. PubMed ID: 24607313
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbial adhesion capacity. Influence of shear and temperature stress.
    Fink R; Oder M; Rangus D; Raspor P; Bohinc K
    Int J Environ Health Res; 2015; 25(6):656-69. PubMed ID: 25693913
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel planar flow cell for studies of biofilm heterogeneity and flow-biofilm interactions.
    Zhang W; Sileika TS; Chen C; Liu Y; Lee J; Packman AI
    Biotechnol Bioeng; 2011 Nov; 108(11):2571-82. PubMed ID: 21656713
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of shear stress and growth conditions on detachment and physical properties of biofilms.
    Paul E; Ochoa JC; Pechaud Y; Liu Y; Liné A
    Water Res; 2012 Nov; 46(17):5499-5508. PubMed ID: 22898671
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrodynamic effects on bacterial biofilm development in a microfluidic environment.
    Kim J; Kim HS; Han S; Lee JY; Oh JE; Chung S; Park HD
    Lab Chip; 2013 May; 13(10):1846-9. PubMed ID: 23576069
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conservation of acquired morphology and community structure in aged biofilms after facing environmental stress.
    Saur T; Escudié R; Santa-Catalina G; Bernet N; Milferstedt K
    Water Res; 2016 Jan; 88():164-172. PubMed ID: 26492343
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of shear stress on composition, diversity and dynamics of biofilm bacterial communities.
    Rochex A; Godon JJ; Bernet N; Escudié R
    Water Res; 2008 Dec; 42(20):4915-22. PubMed ID: 18945468
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic study of effects of flow velocity and nutrient concentration on biofilm accumulation and adhesive strength in the flowing and no-flowing microchannels.
    Liu N; Skauge T; Landa-Marbán D; Hovland B; Thorbjørnsen B; Radu FA; Vik BF; Baumann T; Bødtker G
    J Ind Microbiol Biotechnol; 2019 Jun; 46(6):855-868. PubMed ID: 30874983
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction and quantification of bacterial biofilm detachment using Glazier-Graner-Hogeweg method based model simulations.
    Sheraton MV; Melnikov VR; Sloot PMA
    J Theor Biol; 2019 Dec; 482():109994. PubMed ID: 31487498
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mini-review: convection around biofilms.
    Stewart PS
    Biofouling; 2012; 28(2):187-98. PubMed ID: 22352315
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Macroscale versus microscale methods for physiological analysis of biofilms formed in 96-well microtiter plates.
    Gomes LC; Moreira JM; Miranda JM; Simões M; Melo LF; Mergulhão FJ
    J Microbiol Methods; 2013 Dec; 95(3):342-9. PubMed ID: 24140575
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A photosynthetic rotating annular bioreactor (Taylor-Couette type flow) for phototrophic biofilm cultures.
    Paule A; Lauga B; Ten-Hage L; Morchain J; Duran R; Paul E; Rols JL
    Water Res; 2011 Nov; 45(18):6107-18. PubMed ID: 21962848
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biofilms in 3D porous media: Delineating the influence of the pore network geometry, flow and mass transfer on biofilm development.
    Carrel M; Morales VL; Beltran MA; Derlon N; Kaufmann R; Morgenroth E; Holzner M
    Water Res; 2018 May; 134():280-291. PubMed ID: 29433078
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluid-driven interfacial instabilities and turbulence in bacterial biofilms.
    Fabbri S; Li J; Howlin RP; Rmaile A; Gottenbos B; De Jager M; Starke EM; Aspiras M; Ward MT; Cogan NG; Stoodley P
    Environ Microbiol; 2017 Nov; 19(11):4417-4431. PubMed ID: 28799690
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.