These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 2840380)
1. Membrane fluidity in Bacillus subtilis. Validity of homeoviscous adaptation. Svobodová J; Julák J; Pilar J; Svoboda P Folia Microbiol (Praha); 1988; 33(3):170-7. PubMed ID: 2840380 [TBL] [Abstract][Full Text] [Related]
2. Membrane fluidity in Bacillus subtilis. Physical change and biological adaptation. Svobodová J; Svoboda P Folia Microbiol (Praha); 1988; 33(3):161-9. PubMed ID: 3135254 [TBL] [Abstract][Full Text] [Related]
3. Time-resolved polarized fluorescence studies of the temperature adaptation in Bacillus subtilis using DPH and TMA-DPH fluorescent probes. Herman P; Konopásek I; Plásek J; Svobodová J Biochim Biophys Acta; 1994 Feb; 1190(1):1-8. PubMed ID: 8110802 [TBL] [Abstract][Full Text] [Related]
4. Metabolic control of the membrane fluidity in Bacillus subtilis during cold adaptation. Beranová J; Jemioła-Rzemińska M; Elhottová D; Strzałka K; Konopásek I Biochim Biophys Acta; 2008 Feb; 1778(2):445-53. PubMed ID: 18154726 [TBL] [Abstract][Full Text] [Related]
5. The effect of growth temperature on the thermotropic behavior of the membranes of a thermophilic Bacillus. Composition-structure-function relationships. Reizer J; Grossowicz N; Barenholz Y Biochim Biophys Acta; 1985 May; 815(2):268-80. PubMed ID: 3995029 [TBL] [Abstract][Full Text] [Related]
6. Cytoplasmic membrane fluidity measurements on intact living cells of Bacillus subtilis by fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene. Svobodová J; Svoboda P Folia Microbiol (Praha); 1988; 33(1):1-9. PubMed ID: 3129345 [TBL] [Abstract][Full Text] [Related]
7. Bacillus subtilis alters the proportion of major membrane phospholipids in response to surfactin exposure. Uttlová P; Pinkas D; Bechyňková O; Fišer R; Svobodová J; Seydlová G Biochim Biophys Acta; 2016 Dec; 1858(12):2965-2971. PubMed ID: 27620333 [TBL] [Abstract][Full Text] [Related]
8. Differences in cold adaptation of Bacillus subtilis under anaerobic and aerobic conditions. Beranová J; Mansilla MC; de Mendoza D; Elhottová D; Konopásek I J Bacteriol; 2010 Aug; 192(16):4164-71. PubMed ID: 20581210 [TBL] [Abstract][Full Text] [Related]
9. DnaK and GroEL chaperones are recruited to the Bacillus subtilis membrane after short-term ethanol stress. Seydlová G; Halada P; Fišer R; Toman O; Ulrych A; Svobodová J J Appl Microbiol; 2012 Apr; 112(4):765-74. PubMed ID: 22268681 [TBL] [Abstract][Full Text] [Related]
10. Platelet membrane fluidity individuals at risk for Alzheimer's disease: a comparison of results from fluorescence spectroscopy and electron spin resonance spectroscopy. Zubenko GS; Kopp U; Seto T; Firestone LL Psychopharmacology (Berl); 1999 Jul; 145(2):175-80. PubMed ID: 10463318 [TBL] [Abstract][Full Text] [Related]
11. Cold shock response of Bacillus subtilis: isoleucine-dependent switch in the fatty acid branching pattern for membrane adaptation to low temperatures. Klein W; Weber MH; Marahiel MA J Bacteriol; 1999 Sep; 181(17):5341-9. PubMed ID: 10464205 [TBL] [Abstract][Full Text] [Related]
13. A σW-dependent stress response in Bacillus subtilis that reduces membrane fluidity. Kingston AW; Subramanian C; Rock CO; Helmann JD Mol Microbiol; 2011 Jul; 81(1):69-79. PubMed ID: 21542858 [TBL] [Abstract][Full Text] [Related]
14. Interactive effects of dietary (n-3) polyunsaturated fatty acids and chronic ethanol intoxication on synaptic membrane lipid composition and fluidity in rats. Zérouga M; Beaugé F; Niel E; Durand G; Bourre JM Biochim Biophys Acta; 1991 Nov; 1086(3):295-304. PubMed ID: 1742321 [TBL] [Abstract][Full Text] [Related]
15. Changes in plasma membrane fluidity of Bryonia dioica internodes during thigmomorphogenesis. Mathieu C; Motta C; Hartmann MA; Thonat C; Boyer N Biochim Biophys Acta; 1995 May; 1235(2):249-55. PubMed ID: 7756332 [TBL] [Abstract][Full Text] [Related]
16. The relationship between environmental temperature, cell growth and the fluidity and physical state of the membrane lipids in Bacillus stearothermophilus. McElhaney RN; Souza KA Biochim Biophys Acta; 1976 Sep; 443(3):348-59. PubMed ID: 183821 [TBL] [Abstract][Full Text] [Related]
17. Electron spin resonance studies of lipid fluidity changes in membranes of an uncoupler-resistant mutant of Escherichia coli. Herring FG; Krisman A; Sedgwick EG; Bragg PD Biochim Biophys Acta; 1985 Oct; 819(2):231-40. PubMed ID: 2994734 [TBL] [Abstract][Full Text] [Related]
18. Unsaturated and branched chain-fatty acids in temperature adaptation of Bacillus subtilis and Bacillus megaterium. Suutari M; Laakso S Biochim Biophys Acta; 1992 Jun; 1126(2):119-24. PubMed ID: 1627613 [TBL] [Abstract][Full Text] [Related]
19. The influence of branched-chain and omega-alicyclic fatty acids on the transition temperature of bacillus subtilis lipids. Blume A; Dreher R; Poralla K Biochim Biophys Acta; 1978 Oct; 512(3):489-94. PubMed ID: 101245 [TBL] [Abstract][Full Text] [Related]
20. The fluidity of plasma membranes of Dictyostelium discoideum. The effects of polyunsaturated fatty acid incorporation assessed by fluorescence depolarization and electron paramagnetic resonance. Herring FG; Tatischeff I; Weeks G Biochim Biophys Acta; 1980 Oct; 602(1):1-9. PubMed ID: 6251880 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]