These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 28404996)
1. A rapid and non-invasive method for measuring the peak positive pressure of HIFU fields by a laser beam. Wang H; Zeng D; Chen Z; Yang Z Sci Rep; 2017 Apr; 7(1):850. PubMed ID: 28404996 [TBL] [Abstract][Full Text] [Related]
2. Membrane hydrophone measurement and numerical simulation of HIFU fields up to developed shock regimes. Bessonova OV; Wilkens V IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Feb; 60(2):290-300. PubMed ID: 23357903 [TBL] [Abstract][Full Text] [Related]
3. A comparative evaluation of three hydrophones and a numerical model in high intensity focused ultrasound fields. Haller J; Jenderka KV; Durando G; Shaw A J Acoust Soc Am; 2012 Feb; 131(2):1121-30. PubMed ID: 22352487 [TBL] [Abstract][Full Text] [Related]
4. Investigation of the repeatability and reproducibility of hydrophone measurements of medical ultrasound fields. Martin E; Treeby B J Acoust Soc Am; 2019 Mar; 145(3):1270. PubMed ID: 31067926 [TBL] [Abstract][Full Text] [Related]
5. Spatiotemporal Deconvolution of Hydrophone Response for Linear and Nonlinear Beams-Part I: Theory, Spatial-Averaging Correction Formulas, and Criteria for Sensitive Element Size. Wear KA IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Apr; 69(4):1243-1256. PubMed ID: 35133964 [TBL] [Abstract][Full Text] [Related]
6. Variation of High-Intensity Therapeutic Ultrasound (HITU) Pressure Field Characterization: Effects of Hydrophone Choice, Nonlinearity, Spatial Averaging and Complex Deconvolution. Liu Y; Wear KA; Harris GR Ultrasound Med Biol; 2017 Oct; 43(10):2329-2342. PubMed ID: 28735734 [TBL] [Abstract][Full Text] [Related]
7. The influence of nonlinear fields on miniature hydrophone calibration using the planar scanning technique. Corbett SS IEEE Trans Ultrason Ferroelectr Freq Control; 1988; 35(2):162-7. PubMed ID: 18290142 [TBL] [Abstract][Full Text] [Related]
8. Measurement of high intensity focused ultrasound fields by a fiber optic probe hydrophone. Zhou Y; Zhai L; Simmons R; Zhong P J Acoust Soc Am; 2006 Aug; 120(2):676-85. PubMed ID: 16938956 [TBL] [Abstract][Full Text] [Related]
9. Acousto-optic, point receiver hydrophone probe for operation up to 100 MHz. Lewin PA; Mu C; Umchid S; Daryoush A; El-Sherif M Ultrasonics; 2005 Dec; 43(10):815-21. PubMed ID: 16054665 [TBL] [Abstract][Full Text] [Related]
10. Robust spot-poled membrane hydrophones for measurement of large amplitude pressure waveforms generated by high intensity therapeutic ultrasonic transducers. Wilkens V; Sonntag S; Georg O J Acoust Soc Am; 2016 Mar; 139(3):1319-32. PubMed ID: 27036269 [TBL] [Abstract][Full Text] [Related]
11. Correction for Hydrophone Spatial Averaging Artifacts for Circular Sources. Wear KA; Shah A; Baker C IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Dec; 67(12):2674-2691. PubMed ID: 32746206 [TBL] [Abstract][Full Text] [Related]
12. Nominal Versus Actual Spatial Resolution: Comparison of Directivity and Frequency-Dependent Effective Sensitive Element Size for Membrane, Needle, Capsule, and Fiber-Optic Hydrophones. Wear KA; Shah A IEEE Trans Ultrason Ferroelectr Freq Control; 2023 Feb; 70(2):112-119. PubMed ID: 36178990 [TBL] [Abstract][Full Text] [Related]
13. Correction for Spatial Averaging Artifacts for Circularly-Symmetric Pressure Beams Measured with Membrane Hydrophones. Wear K; Shah A; Baker C IEEE Int Ultrason Symp; 2020; NA():1-4. PubMed ID: 35765664 [TBL] [Abstract][Full Text] [Related]
14. Spatial averaging effects of hydrophone on field characterization of planar transducer using Fresnel approximation. Xing G; Yang P; He L; Feng X Ultrasonics; 2016 Sep; 71():51-58. PubMed ID: 27268164 [TBL] [Abstract][Full Text] [Related]
15. Considerations for Choosing Sensitive Element Size for Needle and Fiber-Optic Hydrophones-Part I: Spatiotemporal Transfer Function and Graphical Guide. Wear KA IEEE Trans Ultrason Ferroelectr Freq Control; 2019 Feb; 66(2):318-339. PubMed ID: 30530326 [TBL] [Abstract][Full Text] [Related]
18. Considerations for Choosing Sensitive Element Size for Needle and Fiber-Optic Hydrophones-Part II: Experimental Validation of Spatial Averaging Model. Wear KA; Liu Y IEEE Trans Ultrason Ferroelectr Freq Control; 2019 Feb; 66(2):340-347. PubMed ID: 30530327 [TBL] [Abstract][Full Text] [Related]
19. Fiber-optic hydrophone for detection of high-intensity ultrasound waves. Aytac Kipergil E; Martin E; Mathews SJ; Papakonstantinou I; Alles EJ; Desjardins AE Opt Lett; 2023 May; 48(10):2615-2618. PubMed ID: 37186722 [TBL] [Abstract][Full Text] [Related]
20. A Fabry-Perot fiber-optic ultrasonic hydrophone for the simultaneous measurement of temperature and acoustic pressure. Morris P; Hurrell A; Shaw A; Zhang E; Beard P J Acoust Soc Am; 2009 Jun; 125(6):3611-22. PubMed ID: 19507943 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]