These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 2840539)

  • 1. Elevation of naloxone-sensitive 3H-dihydromorphine binding in hippocampal formation of genetically epilepsy-prone rats.
    Savage DD; Mills SA; Jobe PC; Reigel CE
    Life Sci; 1988; 43(3):239-46. PubMed ID: 2840539
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Localization of naloxone-sensitive [3H]dihydromorphine binding sites within the hippocampus of the rat.
    Meibach RC; Maayani S
    Eur J Pharmacol; 1980 Nov; 68(2):175-9. PubMed ID: 6258927
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decrease in hippocampal [3H]vinylidene kainic acid binding in genetically epilepsy-prone rats.
    Mills SA; Razani-Boroujerdi S; Reigel CE; Jobe PC; Savage DD
    Neuroscience; 1990; 35(3):519-24. PubMed ID: 2166244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential regulation of mu-opiate receptors in heroin- and morphine-dependent rats.
    Bolger GT; Skolnick P; Rice KC; Weissman BA
    FEBS Lett; 1988 Jul; 234(1):22-6. PubMed ID: 2839362
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of morphine and naloxone on hippocampal CA3 field potentials following systemic administration in the freely-moving rat.
    Linseman MA; Corrigall WA
    Brain Res Bull; 1984 Aug; 13(2):241-5. PubMed ID: 6093941
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Administration of kainic acid and colchicine alters mu and lambda opiate binding in rat hippocampus.
    Perry DC; Grimes LM
    Brain Res; 1989 Jan; 477(1-2):100-8. PubMed ID: 2539228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of mu opioid binding sites in rat spinal cord by chronic intrathecal infusion of morphine and naloxone: a quantitative autoradiography approach.
    Gouarderes C; Jhamandas K; Zajac JM; Beaudet A; Cros J; Quirion R
    Prog Clin Biol Res; 1990; 328():175-8. PubMed ID: 2154775
    [No Abstract]   [Full Text] [Related]  

  • 8. Hippocampal and cortical opioid receptor binding: changes related to the hibernation state.
    Beckman AL; Dean RR; Wamsley JK
    Brain Res; 1986 Oct; 386(1-2):223-31. PubMed ID: 3022878
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of the affinity ligands 14-beta-chloroacetylnaltrexone and 14-beta-bromoacetamidomorphine on [3H]-dihydromorphine binding sites in rat brain.
    Reichman M; Dirksen R; Abood LG; Gala D
    Biochem Pharmacol; 1986 Nov; 35(22):3995-8. PubMed ID: 3022745
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of beta-funaltrexamine on radiolabeled opioid binding.
    Recht LD; Pasternak GW
    Eur J Pharmacol; 1987 Aug; 140(2):209-14. PubMed ID: 2822439
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mu opioid receptors participate in the excitatory effect of opiates in the hippocampal slice.
    Bostock E; Dingledine R; Xu G; Chang KJ
    J Pharmacol Exp Ther; 1984 Dec; 231(3):512-7. PubMed ID: 6094789
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 14 beta-(Bromoacetamido)morphine irreversibly labels mu opioid receptors in rat brain membranes.
    Bidlack JM; Frey DK; Seyed-Mozaffari A; Archer S
    Biochemistry; 1989 May; 28(10):4333-9. PubMed ID: 2548575
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Responsiveness of genetically epilepsy-prone rats to intracerebroventricular morphine-induced convulsions.
    Reigel CE; Jobe PC; Dailey JW; Stewart JJ
    Life Sci; 1988; 42(18):1743-9. PubMed ID: 3362037
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Naloxone receptor binding in gerbil striatum and hippocampus following transient cerebral ischemia.
    Araki T; Murakami F; Kanai Y; Kato H; Kogure K
    Neurochem Int; 1993 Oct; 23(4):319-25. PubMed ID: 8220173
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Opioid receptor ligands in the neonatal rat spinal cord: binding and in vitro depression of the nociceptive responses.
    James IF; Bettaney J; Perkins MN; Ketchum SB; Dray A
    Br J Pharmacol; 1990 Mar; 99(3):503-8. PubMed ID: 2158845
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Morphine tolerance is associated with elevated levels of an uncharacterized endorphin (peak B) in mouse brain with no change in 3H-dihydromorphine binding.
    Lipman JJ; Miller BE; Karkara S; Winfield RC; North WC; Byrne WL
    Life Sci; 1983; 33 Suppl 1():373-6. PubMed ID: 6319893
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biochemical characterization of high-affinity 3H-opioid binding. Further evidence for Mu1 sites.
    Nishimura SL; Recht LD; Pasternak GW
    Mol Pharmacol; 1984 Jan; 25(1):29-37. PubMed ID: 6323950
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decrease in locus coeruleus [3H]idazoxan binding site density in genetically epilepsy-prone (GEPR) rats.
    Razani-Boroujerdi S; Tso-Olivas DY; Hoffman TJ; Weiss GK; Savage DD
    Brain Res; 1993 Jan; 600(2):181-6. PubMed ID: 8094641
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Binding characteristics of mu and kappa agonists in rat brain subcellular fractions.
    Monferini E; Adler MW; Simon EJ
    Life Sci; 1982 Sep 20-27; 31(12-13):1295-8. PubMed ID: 6128655
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Field-specific changes in hippocampal opioid mRNA, peptides, and receptors due to prenatal morphine exposure in adult male rats.
    Schindler CJ; Slamberová R; Rimanóczy A; Hnactzuk OC; Riley MA; Vathy I
    Neuroscience; 2004; 126(2):355-64. PubMed ID: 15207353
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.