BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 28405768)

  • 41. Wave based analysis of the Green's function for a layered cylindrical shell.
    Magliula EA; McDaniel JG
    J Acoust Soc Am; 2012 Jul; 132(1):173-9. PubMed ID: 22779466
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Modelling of anisotropic growth in biological tissues. A new approach and computational aspects.
    Menzel A
    Biomech Model Mechanobiol; 2005 Mar; 3(3):147-71. PubMed ID: 15778872
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Anisotropic stiffness and tensional homeostasis induce a natural anisotropy of volumetric growth and remodeling in soft biological tissues.
    Braeu FA; Aydin RC; Cyron CJ
    Biomech Model Mechanobiol; 2019 Apr; 18(2):327-345. PubMed ID: 30413985
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A mixed finite element formulation for a non-linear, transversely isotropic material model for the cardiac tissue.
    Thorvaldsen T; Osnes H; Sundnes J
    Comput Methods Biomech Biomed Engin; 2005 Dec; 8(6):369-79. PubMed ID: 16393874
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Microplane constitutive model and computational framework for blood vessel tissue.
    Caner FC; Carol I
    J Biomech Eng; 2006 Jun; 128(3):419-27. PubMed ID: 16706591
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A new ChainMail approach for real-time soft tissue simulation.
    Zhang J; Zhong Y; Smith J; Gu C
    Bioengineered; 2016 Jul; 7(4):246-52. PubMed ID: 27282487
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A constitutive model for the periodontal ligament as a compressible transversely isotropic visco-hyperelastic tissue.
    Zhurov AI; Limbert G; Aeschlimann DP; Middleton J
    Comput Methods Biomech Biomed Engin; 2007 Jun; 10(3):223-35. PubMed ID: 17558650
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A Biphasic Transversely Isotropic Poroviscoelastic Model for the Unconfined Compression of Hydrated Soft Tissue.
    Hatami-Marbini H; Maulik R
    J Biomech Eng; 2016 Mar; 138(3):4032059. PubMed ID: 26593630
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The effect of the variation in ACL constitutive model on joint kinematics and biomechanics under different loads: a finite element study.
    Wan C; Hao Z; Wen S
    J Biomech Eng; 2013 Apr; 135(4):041002. PubMed ID: 24231897
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A contact formulation based on a volumetric potential: Application to isogeometric simulations of atrioventricular valves.
    Kamensky D; Xu F; Lee CH; Yan J; Bazilevs Y; Hsu MC
    Comput Methods Appl Mech Eng; 2018 Mar; 330():522-546. PubMed ID: 29736092
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Dynamic and fluid-structure interaction simulations of bioprosthetic heart valves using parametric design with T-splines and Fung-type material models.
    Hsu MC; Kamensky D; Xu F; Kiendl J; Wang C; Wu MC; Mineroff J; Reali A; Bazilevs Y; Sacks MS
    Comput Mech; 2015 Jun; 55(6):1211-1225. PubMed ID: 26392645
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Transversely isotropic properties of porcine liver tissue: experiments and constitutive modelling.
    Chui C; Kobayashi E; Chen X; Hisada T; Sakuma I
    Med Biol Eng Comput; 2007 Jan; 45(1):99-106. PubMed ID: 17160416
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Investigation of the mechanical behaviour of the plantar soft tissue during gait cycle: Experimental and numerical activities.
    Fontanella CG; Forestiero A; Carniel EL; Natali AN
    Proc Inst Mech Eng H; 2015 Oct; 229(10):713-20. PubMed ID: 26405096
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Predictions and measurements of sound transmission through a periodic array of elastic shells in air.
    Krynkin A; Umnova O; Yung Boon Chong A; Taherzadeh S; Attenborough K
    J Acoust Soc Am; 2010 Dec; 128(6):3496-506. PubMed ID: 21218882
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Simulation of soft tissue failure using the material point method.
    Ionescu I; Guilkey JE; Berzins M; Kirby RM; Weiss JA
    J Biomech Eng; 2006 Dec; 128(6):917-24. PubMed ID: 17154694
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A new constitutive formulation for characterizing the mechanical behavior of soft tissues.
    Humphrey JD; Yin FC
    Biophys J; 1987 Oct; 52(4):563-70. PubMed ID: 3676437
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A penetration-based finite element method for hyperelastic 3D biphasic tissues in contact. Part II: finite element simulations.
    Un K; Spilker RL
    J Biomech Eng; 2006 Dec; 128(6):934-42. PubMed ID: 17154696
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Assessing the mechanical properties of anisotropic soft tissues using guided wave elastography: Inverse method and numerical experiments.
    Li GY; Cao Y
    J Acoust Soc Am; 2017 Sep; 142(3):1526. PubMed ID: 28964064
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A microsphere-based remodelling formulation for anisotropic biological tissues.
    Menzel A; Waffenschmidt T
    Philos Trans A Math Phys Eng Sci; 2009 Sep; 367(1902):3499-523. PubMed ID: 19657009
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Direct and inverse identification of constitutive parameters from the structure of soft tissues. Part 1: micro- and nanostructure of collagen fibers.
    Marino M; von Hoegen M; Schröder J; Wriggers P
    Biomech Model Mechanobiol; 2018 Aug; 17(4):1011-1036. PubMed ID: 29492724
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.