These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 28406032)

  • 1. Deposition of DNA Nanostructures on Highly Oriented Pyrolytic Graphite.
    Ricardo KB; Xu A; Salim M; Zhou F; Liu H
    Langmuir; 2017 Apr; 33(16):3991-3997. PubMed ID: 28406032
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNA rearrangement on the octadecylamine modified graphite surface by heating and ultrasonic treatment.
    Xiong X; Han J; Chen Y; Li S; Xiao W; Shi Q
    Nanotechnology; 2021 Jan; 32(5):055601. PubMed ID: 33179606
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Graphene-Encapsulated DNA Nanostructure: Preservation of Topographic Features at High Temperature and Site-Specific Oxidation of Graphene.
    Ricardo KB; Liu H
    Langmuir; 2018 Dec; 34(49):15045-15054. PubMed ID: 30336059
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of underlying octadecylamine monolayer on the DNA conformation on the graphite surface.
    Dubrovin EV; Gerritsen JW; Zivkovic J; Yaminsky IV; Speller S
    Colloids Surf B Biointerfaces; 2010 Mar; 76(1):63-9. PubMed ID: 19896810
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Growth and reactions of SiOx/Si nanostructures on surface-templated molecule corrals.
    Liu Y; Zhang Z; Wells MC; Beebe TP
    Langmuir; 2005 Sep; 21(19):8883-91. PubMed ID: 16142974
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the Adsorption of DNA Origami Nanostructures in Nanohole Arrays.
    Brassat K; Ramakrishnan S; Bürger J; Hanke M; Doostdar M; Lindner JKN; Grundmeier G; Keller A
    Langmuir; 2018 Dec; 34(49):14757-14765. PubMed ID: 29754490
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoscale growth and patterning of inorganic oxides using DNA nanostructure templates.
    Surwade SP; Zhou F; Wei B; Sun W; Powell A; O'Donnell C; Yin P; Liu H
    J Am Chem Soc; 2013 May; 135(18):6778-81. PubMed ID: 23574340
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimized assembly and covalent coupling of single-molecule DNA origami nanoarrays.
    Gopinath A; Rothemund PW
    ACS Nano; 2014 Dec; 8(12):12030-40. PubMed ID: 25412345
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Full Site-Specific Addressability in DNA Origami-Templated Silica Nanostructures.
    Wassermann LM; Scheckenbach M; Baptist AV; Glembockyte V; Heuer-Jungemann A
    Adv Mater; 2023 Jun; 35(23):e2212024. PubMed ID: 36932052
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physical and biochemical insights on DNA structures in artificial and living systems.
    Chen N; Li J; Song H; Chao J; Huang Q; Fan C
    Acc Chem Res; 2014 Jun; 47(6):1720-30. PubMed ID: 24588263
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alignment and Graphene-Assisted Decoration of Lyotropic Chromonic Liquid Crystals Containing DNA Origami Nanostructures.
    Martens K; Funck T; Kempter S; Roller EM; Liedl T; Blaschke BM; Knecht P; Garrido JA; Zhang B; Kitzerow H
    Small; 2016 Mar; 12(12):1658-66. PubMed ID: 26849188
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Purification of functionalized DNA origami nanostructures.
    Shaw A; Benson E; Högberg B
    ACS Nano; 2015 May; 9(5):4968-75. PubMed ID: 25965916
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unusual DNA structures formed on bare highly oriented pyrolytic graphite surfaces studied by atomic force microscopy.
    Liu Z; Zhao L; Zu Y; Tan S; Wang Y; Zhang Y
    Microsc Microanal; 2013 Jun; 19(3):544-52. PubMed ID: 23534938
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNA Origami-Mediated Substrate Nanopatterning of Inorganic Structures for Sensing Applications.
    Piskunen P; Shen B; Julin S; Ijäs H; Toppari JJ; Kostiainen MA; Linko V
    J Vis Exp; 2019 Sep; (151):. PubMed ID: 31609310
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atomic force microscopy investigation of DNA denaturation on a highly oriented pyrolytic graphite surface.
    Barinov NA; Ivanov DA; Dubrovin EV; Klinov DV
    Int J Biol Macromol; 2024 May; 267(Pt 2):131630. PubMed ID: 38631581
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemistry using self-assembled DNA monolayers on highly oriented pyrolytic graphite.
    Gorodetsky AA; Barton JK
    Langmuir; 2006 Aug; 22(18):7917-22. PubMed ID: 16922584
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Label free detection of nucleic acids by modulating nanochannel surfaces.
    Crisalli P; McCallum C; Pennathur S
    Chem Commun (Camb); 2015 Feb; 51(12):2335-8. PubMed ID: 25562395
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Boron-Implanted Silicon Substrates for Physical Adsorption of DNA Origami.
    Takabayashi S; Kotani S; Flores-Estrada J; Spears E; Padilla JE; Godwin LC; Graugnard E; Kuang W; Sills S; Hughes WL
    Int J Mol Sci; 2018 Aug; 19(9):. PubMed ID: 30149587
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scanning tunneling microscopy study of DNA-chromophore motif on solid surfaces.
    Deng W; Xiao Z; Wang W; Li AD
    J Phys Chem B; 2007 Jun; 111(23):6544-8. PubMed ID: 17506546
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial Organization of Enzyme Cascade on a DNA Origami Nanostructure.
    Fu J; Li T
    Methods Mol Biol; 2017; 1500():153-164. PubMed ID: 27813007
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.