These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 28406291)

  • 61. An all atom energy based computational protocol for predicting binding affinities of protein-ligand complexes.
    Jain T; Jayaram B
    FEBS Lett; 2005 Dec; 579(29):6659-66. PubMed ID: 16307743
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Binding affinity prediction for protein-ligand complexes based on β contacts and B factor.
    Liu Q; Kwoh CK; Li J
    J Chem Inf Model; 2013 Nov; 53(11):3076-85. PubMed ID: 24191692
    [TBL] [Abstract][Full Text] [Related]  

  • 63. An electronic environment and contact direction sensitive scoring function for predicting affinities of protein-ligand complexes in Contour(®).
    Lindblom PR; Wu G; Liu Z; Jim KC; Baldwin JJ; Gregg RE; Claremon DA; Singh SB
    J Mol Graph Model; 2014 Sep; 53():118-127. PubMed ID: 25123650
    [TBL] [Abstract][Full Text] [Related]  

  • 64. The relaxed complex method: Accommodating receptor flexibility for drug design with an improved scoring scheme.
    Lin JH; Perryman AL; Schames JR; McCammon JA
    Biopolymers; 2003 Jan; 68(1):47-62. PubMed ID: 12579579
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Structural mining: self-consistent design on flexible protein-peptide docking and transferable binding affinity potential.
    Liu Z; Dominy BN; Shakhnovich EI
    J Am Chem Soc; 2004 Jul; 126(27):8515-28. PubMed ID: 15238009
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Prediction of protein-ligand complex structure by docking software guided by other complex structures.
    Fukunishi Y; Nakamura H
    J Mol Graph Model; 2008 Feb; 26(6):1030-3. PubMed ID: 17692546
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Implementation of the NMR CHEmical Shift Covariance Analysis (CHESCA): A Chemical Biologist's Approach to Allostery.
    Boulton S; Selvaratnam R; Ahmed R; Melacini G
    Methods Mol Biol; 2018; 1688():391-405. PubMed ID: 29151219
    [TBL] [Abstract][Full Text] [Related]  

  • 68. NMR in drug design.
    Harner MJ; Mueller L; Robbins KJ; Reily MD
    Arch Biochem Biophys; 2017 Aug; 628():132-147. PubMed ID: 28619618
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Molecular dynamics simulation of ligand dissociation from liver fatty acid binding protein.
    Long D; Mu Y; Yang D
    PLoS One; 2009 Jun; 4(6):e6081. PubMed ID: 19564911
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Millisecond timescale dynamics of human liver fatty acid binding protein: testing of its relevance to the ligand entry process.
    Long D; Yang D
    Biophys J; 2010 Jun; 98(12):3054-61. PubMed ID: 20550918
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Quantification of free ligand conformational preferences by NMR and their relationship to the bioactive conformation.
    Blundell CD; Packer MJ; Almond A
    Bioorg Med Chem; 2013 Sep; 21(17):4976-87. PubMed ID: 23886813
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Protein-protein interaction analysis by nuclear magnetic resonance spectroscopy.
    Thompson PM; Beck MR; Campbell SL
    Methods Mol Biol; 2015; 1278():267-79. PubMed ID: 25859955
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Experimental and Computational Models for Side Chain Discrimination in Peptide-Protein Interactions.
    Lidskog A; Dawaigher S; Solano Arribas C; Ryberg A; Jensen J; Bergquist KE; Sundin A; Norrby PO; Wärnmark K
    Chemistry; 2021 Jul; 27(42):10883-10897. PubMed ID: 33908678
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Precipitation in Manchester: ketorolac/cyclizine.
    Smith RP; Jones M
    Anaesthesia; 2001 May; 56(5):494-5. PubMed ID: 11350357
    [No Abstract]   [Full Text] [Related]  

  • 75. Ligand-Induced Variations in Structural and Dynamical Properties Within an Enzyme Superfamily.
    Narayanan C; Bernard DN; Bafna K; Gagné D; Agarwal PK; Doucet N
    Front Mol Biosci; 2018; 5():54. PubMed ID: 29946547
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Correlation between protein function and ligand binding profiles.
    Shortridge MD; Bokemper M; Copeland JC; Stark JL; Powers R
    J Proteome Res; 2011 May; 10(5):2538-45. PubMed ID: 21366353
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Measurement of ligand binding with nuclear magnetic resonance spectroscopy.
    Brown CE
    J Neurosci Methods; 1981 Apr; 3(4):339-63. PubMed ID: 7242144
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Monitoring of nanoparticle reactivity in solution: interaction of l-lysine and Ru nanoparticles probed by chemical shift perturbation parallels regioselective H/D exchange.
    Martínez-Prieto LM; Baquero EA; Pieters G; Flores JC; de Jesús E; Nayral C; Delpech F; van Leeuwen PWNM; Lippens G; Chaudret B
    Chem Commun (Camb); 2017 May; 53(43):5850-5853. PubMed ID: 28504805
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Fast and Reasonable Geometry Optimization of Lanthanoid Complexes with an Extended Tight Binding Quantum Chemical Method.
    Bursch M; Hansen A; Grimme S
    Inorg Chem; 2017 Oct; 56(20):12485-12491. PubMed ID: 28981275
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A Universal Pattern in the Percolation and Dissipation of Protein Structural Perturbations.
    Rajasekaran N; Sekhar A; Naganathan AN
    J Phys Chem Lett; 2017 Oct; 8(19):4779-4784. PubMed ID: 28910120
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.